
 Michael Saelee : CS10
0-F12 talk

Does programming really need to be so hard?
State, Concurrency & Complexity

Objectives
- explain how complexity impacts soware
- distinguish between necessary and

accidental complexity
- identify ways we deal with complexity
- understand how state affects programs

Objectives (2)
- understand the importance of concurrency
- recognize ties between state, concurrency,

and complexity
- understand how different programming

paradigms deal with state & concurrency

Topics
1. Complexity (overview)
2. Managing complexity
3. State
4. Concurrency
5. Object oriented programming
6. Functional programming

§ Complexity

What makes programming hard?
- language & API
- code volume
- algorithmic complexity
- performance requirements
- backwards/forwards compatibility
- complexity

Complexity is the root cause of the vast majority of problems with
soware today. Unreliability, late delivery, lack of security —
oen even poor performance in large-scale systems can all be seen
as deriving ultimately om unmanageable complexity.

- Ben Moseley and Peter Marks, Out of the Tar Pit

but what makes this interesting is that we can
partition complexity into different categories

essential complexity arises from the actual
problem we’re trying to solve.
e.g., determine the next best chess move, given
 all prior moves and the rules of the game

in an ideal world, a sufficiently detailed
problem description can be used to
automatically generate a working solution (!)

layout of a chess board, rules of the game,
meaning of “good” outcomes (e.g., checkmate)

Perfect Chess Artificial Intelligence

Magic solution machine

accidental complexity arises because our
programming tools aren’t perfect:

- expressing logic via (imperfect) language
- user defined data types (e.g., chessboard)
- managing derived data (e.g., game tree)
- performance optimization

we want to minimize accidental complexity
i.e., don’t make it harder than it needs to be!

§ Managing complexity

Ask any project manager:
 How do we deal with complexity in a large
soware project?

… add more programmers!

… our estimating techniques fallaciously confuse effort with
progress, hiding the assumption that men and months are
interchangeable.

Adding manpower to a late soware project makes it later.

- Frederick P. Brooks, e Mythical Man-Month

Ask any project manager:
 How do we deal with complexity in a large
soware project?

… add more programmers!

1. Do not make overly-optimistic estimates
2. Plan appropriately (reasoning)
3. Divide and conquer (modularization)
4. Test, test, test! (testing)

Reasoning:
- pencil & paper planning
- algorithmic proofs
- “hammock-driven development”

… but the brain’s working store is very limited!

Modularization:
- break problem into manageable pieces
- work on each piece separately
- define clear application programming

interfaces (APIs) to connect them

Testing:
- ideally, start before implementation

- given input, specify output/behavior
- unit tests for discrete program modules
- perform continuous integration

Testing granularity?
- functions
- packages
- programs
- systems

Ideally, modules being tested are composable.
e.g., if A is tested, and B is tested, then we
 know that A + B works predictably.

Modularization & Composability allow us to
use prior work & ignore their implementation

i.e., modularization & composability give us
automatic abstraction

(and programmers ♥ abstraction!)

Civilization advances by extending the number of important
operations which we can perform without thinking.

- Alfred North Whitehouse

but … what defeats composability?

§ State

state |stāt|
noun
1 the particular condition that someone or something
	 is in at a specific time

vs.

given a particular set of inputs, a
stateless function always returns the same result

a.k.a. pure function

mathematical functions are stateless

- we can always replace identical function
calls with the same value

- known as referential transparency

Z 2

0
x dx ·

✓Z 2

0
x dx+ 5 ·

Z 2

0
x dx

◆
= ?

= 2

Z 2

0
x dx =

x

2

2

�2

0

referential transparency supports composability
— if we test a pure function in isolation, it will
work exactly as predicted anywhere we use it.

def quadratic_roots(a,b,c):
 d = discriminant(a,b,c)
 if d == 0:
 return -b / 2*a
 elif d > 0:
 sqrt_d = math.sqrt(d)
 return ((-b+sqrt_d)/2*a, (-b-sqrt_d)/2*a)
 else:
 return "No real roots!"

def discriminant(a,b,c):
 return b*b - 4*a*c

quadratic_roots(1,4,4) => -2

quadratic_roots(1,-1,-2) => (2.0, -1.0)

quadratic_roots(1,3,8) => “No real roots!”

(
� = b

2 � 4ac

x = �b±
p
�

2a

however, functions in programming languages
may reference and update mutable state, which
can affect the result of its computations

num_times = 0

def foo():
 global num_times
 num_times += 1
 if num_times < 100:
 return 10
 else:
 return "I'm too old for this!"

=> “I’m too old for this!”

=> 10foo()

for _ in range(99): foo()

foo()

assume we don't know what went before ...

foo() + foo() # => ?

num_times = 0

def foo():
 global num_times
 num_times += 1
 if num_times < 100:
 return 10
 else:
 return "I'm too old for this!"

we say that the function foo has side effects
(or is a stateful function)

functions with side effects are harder to test —
their results are dependent on the current state
even worse: this state may be modified by
other stateful functions, too!

One of the issues (that affects both testing and reasoning) is the
exponential rate at which the number of possible states grows —
for every single bit of state that we add we double the total
number of possible states.

- Ben Moseley and Peter Marks, Out of the Tar Pit

note: if an otherwise stateless function calls a
 stateful function, it is no longer
 referentially transparent
i.e., statefulness is contagious!

Anyone who has ever telephoned a support desk for a soware
system and been told to “try it again”, or “reload the document”,
or “restart the program”, or “reboot your computer” or “re-install
the program” or even “re- install the operating system and then
the program” has direct experience of the problems that state
causes for writing reliable, understandable soware.

- Ben Moseley and Peter Marks, Out of the Tar Pit

reasoning about stateful programs is hard … we
need to consider all possible paths through a
program and how changes to state affect results

but … what if more than one path were being
taken through our programs simultaneously?

§ Concurrency

e ee lunch is over. We have grown used to the idea that our
programs will go faster when we buy a next-generation processor,
but that time has passed. While that next-generation chip will
have more CPUs, each individual CPU will be no faster than the
previous year’s model. If we want our programs to run faster, we
must learn to write parallel programs.

- Simon Peyton Jones, Beautiful Concurrency

concurrency within a program = multiple
threads executing functions (potentially the
same ones) simultaneously

results = {}

def cache_result(a,b,c):
 results[(a,b,c)] = quadratic_roots(a,b,c)

results[(1,4,4)] # => -2

results[(1,3,2)] # => (-1.0, -2.0)

results[(1,1,1)] # => No real roots!

allow for 10 threads to run concurrently
pool = ThreadPool(10)

for a in range(1,5):
 for b in range(1,5):
 for c in range(1,5):
 pool.add_task(cache_result, a, b, c)

def foo(n):
 global shared
 for _ in range(n):
 shared = shared + 1

def bar(n):
 global shared
 for _ in range(n):
 shared = shared + 1

def test(n):
 global shared
 shared = 0
 pool = ThreadPool(2)
 pool.add_task(foo, n)
 pool.add_task(bar, n)
 pool.wait_completion()
 print(shared_var)

=> 692171

=> 1000

=> 10000

=> 81443

test(500)

test(5000)

test(50000)

test(500000)

test(50) => 100

results are non-deterministic
— caused by “race conditions”

Concurrency also affects testing, for in this case, we can no longer
even be assured of result consistency when repeating tests on a
system — even if we somehow ensure a consistent starting state.
Running a test in the presence of concurrency with a known
initial state and set of inputs tells you nothing at all about what
will happen the next time you run that very same test with the
very same inputs and the very same starting state. . . and things
can’t really get any worse than that.

- Ben Moseley and Peter Marks, Out of the Tar Pit

side effects + concurrency kill composability,
and make reasoning & testing nigh impossible!

how do our programming language paradigms
deal with state & concurrency?

§ Object Oriented
Programming

OOP essentials:
- identify the nouns in a problem
- model them with user-defined classes
- instances of these classes encapsulate data

with behavior-defining methods

OOP implies stateful programming.

OOP also simplifies (but complicates) identity
- identity is disconnected from state
- an object’s state (attributes) can change, but

it’s still considered the same object

Student s = new Student()
s.setName("Michael");
...
s.setName("Jane"); // `s` is still the same object!

In the real world, objects perpetually advance
through separate, instantaneous states

- we conveniently use names
(i.e., references) to refer to the
most recent state

- we can’t go back and change
a state (a moment in time!)

OOP lacks state stability!
- while a thread is observing an object, its

state may be changed by another thread
- to avoid issues, use locks to prevent threads

from concurrently accessing objects
- inefficient & really hard to test

OOP is not particularly suitable for writing
concurrent programs!

§ Functional Programming

Functional programming essentials:
- eschew stateful computation
- no statements, only expressions
- prefer (or require) all functions to be pure
- functions are “first class” — i.e., they can be

created, stored, and passed like other data

discriminant (a,b,c) = b**2 - 4*a*c

quadratic_roots (a,b,c) = [(-b+d)/2*a, (-b-d)/2*a]
 where d = sqrt (discriminant (a,b,c))

quadratic_roots (1,4,4) => [-2.0,-2.0]

eqns = [(a,b,c) | a <- [1..4], b <- [1..4], c <- [1..4]]

map discriminant eqns => [-3.0,-7.0,-11.0,...,-32.0,-48.0]

map quadratic_roots $ filter ((>= 0) . discriminant) eqns
 => [[-1.0,-1.0],[-0.38,-2.62],...,[-3.0,-9.0],[-0.5,-0.5]]

filter ((>= 0) . discriminant) eqns
 => [(1,2,1),(1,3,1),(1,3,2),(1,4,1),(1,4,2),(1,4,3),
 (1,4,4),(2,3,1),(2,4,1),(2,4,2),(3,4,1),(4,4,1)]

functional purity → referential transparency
- great for composability
- huge boon to reasoning and testing
- enables automatic performance

optimizations (e.g., memoization)

but … not everything’s a pure function!
- “search the web for ‘memoization’”
- “remotely start my car”
- “fire my shrink-ray!”

key is to minimize & isolate state manipulation
- separate pure & impure aspects
- distinguish identity and state
- enable comprehensive testing and

high level reasoning

many topics to explore!
- message-passing frameworks
- soware transactional memory
- monads & monadic composition
- languages: Erlang, Clojure, Haskell

Conentional programming languages are growing ever more
enormous, but not stronger. Inherent defects at the most basic
level cause them to be both fat and weak: their primitive word-at-
a-time style of programming …, their close coupling of semantics
to state transitions, their division of programming into a world of
expressions and a world of statements, their inability to effectively
use powerful combining forms for building new programs om
existing ones, and their lack of useful mathematical properties for
reasoning about programs.

- John Backus, Can Programming Be
Liberated om the on Neumann Style? (1978)

References:
- Frederick P. Brooks, "e Mythical Man-Month."
- Ben Moseley and Peter Marks, "Out of the Tar Pit."
- Simon Peyton Jones, "Beautiful Concurrency."
- Rich Hickey, "Are We ere Yet?"
- John Backus, "Can Programming Be Liberated from the

von Neumann Style?"

