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Does programming really need to be so hard?
State, Concurrency & Complexity



Objectives
- explain how complexity impacts soware
- distinguish between necessary and 

accidental complexity
- identify ways we deal with complexity
- understand how state affects programs



Objectives (2)
- understand the importance of concurrency
- recognize ties between state, concurrency, 

and complexity
- understand how different programming 

paradigms deal with state & concurrency



Topics
1. Complexity (overview)
2. Managing complexity
3. State
4. Concurrency
5. Object oriented programming
6. Functional programming



§ Complexity



What makes programming hard?
- language & API
- code volume
- algorithmic complexity
- performance requirements
- backwards/forwards compatibility
- complexity



Complexity is the root cause of the vast majority of problems with 
soware today. Unreliability, late delivery, lack of security — 
oen even poor performance in large-scale systems can all be seen 
as deriving ultimately om unmanageable complexity.

- Ben Moseley and Peter Marks, Out of the Tar Pit



but what makes this interesting is that we can  
partition complexity into different categories



essential complexity arises from the actual 
problem we’re trying to solve.
e.g.,  determine the next best chess move, given 
  all prior moves and the rules of the game



in an ideal world, a sufficiently detailed 
problem description can be used to 
automatically generate a working solution (!)



layout of a chess board, rules of the game, 
meaning of “good” outcomes (e.g., checkmate)

Perfect Chess Artificial Intelligence

Magic solution machine



accidental complexity arises because our 
programming tools aren’t perfect:

- expressing logic via (imperfect) language 
- user defined data types (e.g., chessboard)
- managing derived data (e.g., game tree)
- performance optimization



we want to minimize accidental complexity
i.e., don’t make it harder than it needs to be!



§ Managing complexity



Ask any project manager: 
 How do we deal with complexity in a large 
soware project?

… add more programmers!



… our estimating techniques fallaciously confuse effort with 
progress, hiding the assumption that men and months are 
interchangeable.

Adding manpower to a late soware project makes it later.

- Frederick P. Brooks, e Mythical Man-Month



Ask any project manager: 
 How do we deal with complexity in a large 
soware project?

… add more programmers!



1. Do not make overly-optimistic estimates
2. Plan appropriately (reasoning) 
3. Divide and conquer (modularization)
4. Test, test, test! (testing)



Reasoning:
- pencil & paper planning
- algorithmic proofs
- “hammock-driven development”

… but the brain’s working store is very limited!



Modularization:
- break problem into manageable pieces
- work on each piece separately
- define clear application programming 

interfaces (APIs) to connect them



Testing:
- ideally, start before implementation

- given input, specify output/behavior
- unit tests for discrete program modules
- perform continuous integration



Testing granularity?
- functions
- packages
- programs
- systems



Ideally, modules being tested are composable.
e.g., if A is tested, and B is tested, then we
 know that A + B works predictably. 



Modularization & Composability allow us to 
use prior work & ignore their implementation



i.e., modularization & composability give us  
automatic abstraction

(and programmers ♥ abstraction!)



Civilization advances by extending the number of important 
operations which we can perform without thinking.

- Alfred North Whitehouse



but … what defeats composability?



§ State



state |stāt|
noun
1 the particular condition that someone or something 
	 is in at a specific time

vs.



given a particular set of inputs, a 
stateless function always returns the same result

a.k.a. pure function



mathematical functions are stateless

- we can always replace identical function 
calls with the same value

- known as referential transparency
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referential transparency supports composability
— if we test a pure function in isolation, it will 
work exactly as predicted anywhere we use it.



def quadratic_roots(a,b,c):
    d = discriminant(a,b,c)
    if d == 0:
        return -b / 2*a
    elif d > 0:
        sqrt_d = math.sqrt(d)
        return ((-b+sqrt_d)/2*a, (-b-sqrt_d)/2*a)
    else:
        return "No real roots!"

def discriminant(a,b,c):
    return b*b - 4*a*c

quadratic_roots(1,4,4)    => -2 

quadratic_roots(1,-1,-2)  => (2.0, -1.0)

quadratic_roots(1,3,8)    => “No real roots!”
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however, functions in programming languages 
may reference and update mutable state, which 
can affect the result of its computations



num_times = 0

def foo():
    global num_times
    num_times += 1
    if num_times < 100:
        return 10
    else:
        return "I'm too old for this!"

# => “I’m too old for this!”

# => 10foo()

for _ in range(99): foo()

foo()

# assume we don't know what went before ...

foo() + foo()      # => ?



num_times = 0

def foo():
    global num_times
    num_times += 1
    if num_times < 100:
        return 10
    else:
        return "I'm too old for this!"

we say that the function foo has side effects 
(or is a stateful function)



functions with side effects are harder to test — 
their results are dependent on the current state
even worse: this state may be modified by 
other stateful functions, too!



One of the issues (that affects both testing and reasoning) is the 
exponential rate at which the number of possible states grows — 
for every single bit of state that we add we double the total 
number of possible states.

- Ben Moseley and Peter Marks, Out of the Tar Pit



note:  if an otherwise stateless function calls a 
 stateful function, it is no longer 
 referentially transparent
i.e., statefulness is contagious!



Anyone who has ever telephoned a support desk for a soware 
system and been told to “try it again”, or “reload the document”, 
or “restart the program”, or “reboot your computer” or “re-install 
the program” or even “re- install the operating system and then 
the program” has direct experience of the problems that state 
causes for writing reliable, understandable soware.

- Ben Moseley and Peter Marks, Out of the Tar Pit



reasoning about stateful programs is hard … we 
need to consider all possible paths through a 
program and how changes to state affect results



but … what if more than one path were being 
taken through our programs simultaneously?



§ Concurrency



e ee lunch is over. We have grown used to the idea that our 
programs will go faster when we buy a next-generation processor, 
but that time has passed. While that next-generation chip will 
have more CPUs, each individual CPU will be no faster than the 
previous year’s model. If we want our programs to run faster, we 
must learn to write parallel programs.

- Simon Peyton Jones, Beautiful Concurrency



concurrency within a program = multiple 
threads executing functions (potentially the 
same ones) simultaneously



results = {}

def cache_result(a,b,c):
    results[(a,b,c)] = quadratic_roots(a,b,c)

results[(1,4,4)]  # => -2

results[(1,3,2)]  # => (-1.0, -2.0)

results[(1,1,1)]  # => No real roots!

# allow for 10 threads to run concurrently
pool = ThreadPool(10)

for a in range(1,5):
    for b in range(1,5):
        for c in range(1,5):
            pool.add_task(cache_result, a, b, c)



def foo(n):
    global shared
    for _ in range(n):
        shared = shared + 1

def bar(n):
    global shared
    for _ in range(n):
        shared = shared + 1

def test(n):
    global shared
    shared = 0
    pool = ThreadPool(2)
    pool.add_task(foo, n)
    pool.add_task(bar, n)
    pool.wait_completion()
    print(shared_var)

=>  692171

=>    1000

=>   10000

=>   81443

test(500)

test(5000)

test(50000)

test(500000)

test(50) =>     100



results are non-deterministic
— caused by “race conditions”



Concurrency also affects testing, for in this case, we can no longer 
even be assured of result consistency when repeating tests on a 
system — even if we somehow ensure a consistent starting state. 
Running a test in the presence of concurrency with a known 
initial state and set of inputs tells you nothing at all about what 
will happen the next time you run that very same test with the 
very same inputs and the very same starting state. . . and things 
can’t really get any worse than that.

- Ben Moseley and Peter Marks, Out of the Tar Pit



side effects + concurrency kill composability, 
and make reasoning & testing nigh impossible!



how do our programming language paradigms 
deal with state & concurrency?



§ Object Oriented 
Programming



OOP essentials:
- identify the nouns in a problem
- model them with user-defined classes
- instances of these classes encapsulate data 

with behavior-defining methods



OOP implies stateful programming.



OOP also simplifies (but complicates) identity
- identity is disconnected from state
- an object’s state (attributes) can change, but 

it’s still considered the same object

Student s = new Student()
s.setName("Michael");
...
s.setName("Jane");  // `s` is still the same object!



In the real world, objects perpetually advance 
through separate, instantaneous states

- we conveniently use names 
(i.e., references) to refer to the 
most recent state

- we can’t go back and change
a state (a moment in time!)



OOP lacks state stability!
- while a thread is observing an object, its 

state may be changed by another thread
- to avoid issues, use locks to prevent threads 

from concurrently accessing objects
- inefficient & really hard to test



OOP is not particularly suitable for writing 
concurrent programs!



§ Functional Programming



Functional programming essentials:
- eschew stateful computation
- no statements, only expressions
- prefer (or require) all functions to be pure
- functions are “first class” — i.e., they can be 

created, stored, and passed like other data



discriminant (a,b,c) = b**2 - 4*a*c

quadratic_roots (a,b,c) = [(-b+d)/2*a, (-b-d)/2*a]
  where d = sqrt (discriminant (a,b,c))

quadratic_roots (1,4,4)  =>  [-2.0,-2.0]

eqns = [(a,b,c) | a <- [1..4], b <- [1..4], c <- [1..4]]

map discriminant eqns  => [-3.0,-7.0,-11.0,...,-32.0,-48.0]

map quadratic_roots $ filter ((>= 0) . discriminant) eqns
   => [[-1.0,-1.0],[-0.38,-2.62],...,[-3.0,-9.0],[-0.5,-0.5]]

filter ((>= 0) . discriminant) eqns  
   => [(1,2,1),(1,3,1),(1,3,2),(1,4,1),(1,4,2),(1,4,3),
       (1,4,4),(2,3,1),(2,4,1),(2,4,2),(3,4,1),(4,4,1)]



functional purity → referential transparency
- great for composability
- huge boon to reasoning and testing
- enables automatic performance 

optimizations (e.g., memoization)



but … not everything’s a pure function!
- “search the web for ‘memoization’”
- “remotely start my car”
- “fire my shrink-ray!”



key is to minimize & isolate state manipulation
- separate pure & impure aspects
- distinguish identity and state
- enable comprehensive testing and 

high level reasoning



many topics to explore!
- message-passing frameworks
- soware transactional memory
- monads & monadic composition
- languages: Erlang, Clojure, Haskell



Conentional programming languages are growing ever more 
enormous, but not stronger. Inherent defects at the most basic 
level cause them to be both fat and weak: their primitive word-at-
a-time style of programming …, their close coupling of semantics 
to state transitions, their division of programming into a world of 
expressions and a world of statements, their inability to effectively 
use powerful combining forms for building new programs om 
existing ones, and their lack of useful mathematical properties for 
reasoning about programs.

- John Backus, Can Programming Be 
Liberated om the on Neumann Style? (1978)
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