
CS 495: Programming Paradigms and Patterns

January 13, 2016

Contents

1 Overview 1

2 Big picture ideas 2

3 Secondary learning objectives 3

4 Detailed topics 3

5 ACM Curriculum Guidelines for CS UG Degree Programs 4
5.1 Relevant Knowledge Areas (KAs) 4

5.1.1 Programming Languages / Functional Programming . 4
5.1.2 Programming Languages / Advanced Programming

Constructs . 6
5.1.3 Programming Languages / Language Pragmatics . . . 7
5.1.4 Software Development Fundamentals / Development

Methods . 8
5.1.5 Software Engineering / Tools and Environments 9

1 Overview

After completing the introductory programming sequence (CS 115 & CS
116 or CS 201), students remain ill-equipped to begin programming in the
large 1. For one, they are unfamiliar with how to use and combine ba-
sic data structures such as lists and hashmaps. They have also not been
taught to recognize the dangers of misusing programming concepts such as

1We use "programming in the large" to refer to the design and implementation of
programmed systems made up of a large number of functions and/or modules, requiring
a high degree of abstraction, reuse and composability.

1

mutable and shared state. Additionally, because of the strong focus of the
introductory sequence on the imperative and object-oriented programming
paradigms, students have not been exposed to a number of important pro-
gramming concepts and abstractions including lexically scoped closures and
higher order functions 2

We propose a new required course, to be taken by all CS undergraduate
students after the completion of CS 116 / CS 201, which will focus on ideas
and techniques that will help give students the confidence to construct large
programmed systems. The class aims to teach concepts related to manag-
ing complexity in programs, building and reusing composable modules, and
choosing the right paradigms and tools for the problem at hand. Also, to
balance the strong imperative bent of the introductory sequence, the class
will make use of a language with a functional core (e.g., Scheme).

Another motive for teaching the functional programming paradigm stems
from the increasingly urgent need to prepare students to write programs
that leverage multi-core processors, i.e., concurrent programs. Abstractions
derived from the functional world and related techniques for isolating state
mutations are very useful for dealing with concurrency and non-determinism,
and can greatly reduce the complexity of concurrent programs. These, in
turn, clearly complement the core objective of the class.

In section 2 we list the "big picture ideas" students are expected to inter-
nalize after completing the class; section 3 lists secondary (mostly pragmatic)
learning objectives; section 4 contains a detailed list of topics to be covered;
section 6 presents and highlights relevant topics and learning objectives from
the 2013 ACM Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science.

2 Big picture ideas

• records (aka structs) let us build complex data structures

• data types and "shapes" drive function design and implementation

• higher order functions let us build abstractions and manage complexity

• lexically scoped closures are a core programming concept

• mutable state increases complexity and must be carefully managed
2This is partly due to the inordinate amount of time spent teaching the syntax of the

Java programming language. It is not advisable to switch languages at this time, however,
due to both industry demand and that of the College Board.

2

• languages can be molded to suit our needs

• antipatterns increase complexity: avoid them!

3 Secondary learning objectives

• learn how to organize large programs using a module system

• learn how to use a REPL and debugger to test and debug code

• learn how, where, and when to write and run tests

• understand and apply the practice of iterative development

• learn how to use a distributed version control system

4 Detailed topics

• Records as building blocks

– vectors

– self-referential structures → lists, association lists, trees

• Data driven design

– simple records → destructuring / reconstitution

– self-referential structures → recursion

– primitive recursion and accumulation

– type descriptions

– polymorphism

• Higher order functions

– composition

– partial application

– mapping & reducing

– towards aspect-oriented programming

• Closures as a core abstraction

3

– as functions

– as classes & objects

– for lazy evaluation

• Mutable state

– unpredictability

– referential transparency

• Antipatterns

– repetition (copy/paste coding)

– accidental complexity

– circular dependencies

– action at a distance (via pointers/references)

– premature optimization

• Language molding

– "bottom-up" design

– domain specific languages

– macros

• Practicum

– distributed version control

– module systems, packages, and namespaces

– instrumentation / profiling

5 ACM Curriculum Guidelines for CS UG Degree
Programs

5.1 Relevant Knowledge Areas (KAs)

5.1.1 Programming Languages / Functional Programming

Topics:

[Core-Tier1]

4

• Effect-free programming

– Function calls have no side effects, facilitating compo-
sitional reasoning

– Variables are immutable, preventing unexpected changes
to program data by other code

– Data can be freely aliased or copied without introducing
unintended effects from mutation

• Processing structured data (e.g., trees) via functions
with cases for each data variant

– Associated language constructs such as discriminated
unions and pattern-matching over them

– Functions defined over compound data in terms of func-
tions applied to the constituent pieces

• First-class functions (taking, returning, and storing func-
tions)

[Core-Tier2]

• Function closures (functions using variables in the enclos-
ing lexical environment)

– Basic meaning and definition – creating closures at run-
time by capturing the environment

– Canonical idioms: call-backs, arguments to iterators,
reusable code via function arguments

– Using a closure to encapsulate data in its environment
– Currying and partial application

• Defining higher-order operations on aggregates, es-
pecially map, reduce/fold, and filter

Learning outcomes:

[Core-Tier1]

1. Write basic algorithms that avoid assigning to muta-
ble state or considering reference equality. [Usage]

2. Write useful functions that take and return other
functions. [Usage]

5

3. Compare and contrast (1) the procedural/functional
approach (defining a function for each operation with
the function body providing a case for each data variant)
and (2) the object-oriented approach (defining a class
for each data variant with the class definition providing a
method for each operation). Understand both as defining a
matrix of operations and variants. [Assessment] This out-
come also appears in PL/Object-Oriented Programming.

[Core-Tier2]

1. Correctly reason about variables and lexical scope
in a program using function closures. [Usage]

2. Use functional encapsulation mechanisms such as
closures and modular interfaces. [Usage]

3. Define and use iterators and other operations on
aggregates, including operations that take functions as ar-
guments, in multiple programming languages, selecting the
most natural idioms for each language. [Usage] This out-
come also appears in PL/Object-Oriented Programming.

5.1.2 Programming Languages / Advanced Programming Con-
structs

Topics:

• Lazy evaluation and infinite streams

• Control Abstractions: Exception Handling, Continua-
tions, Monads

• Object-oriented abstractions: Multiple inheritance, Mixins,
Traits, Multimethods

• Metaprogramming: Macros, Generative program-
ming, Model-based development

• Module systems

• String manipulation via pattern-matching (regular
expressions)

• Dynamic code evaluation ("eval")

• Language support for checking assertions, invari-
ants, and pre/post-conditions

6

Learning outcomes:

1. Use various advanced programming constructs and
idioms correctly. [Usage]

2. Discuss how various advanced programming con-
structs aim to improve program structure, software
quality, and programmer productivity. [Familiarity]

3. Discuss how various advanced programming con-
structs interact with the definition and implemen-
tation of other language features. [Familiarity]

5.1.3 Programming Languages / Language Pragmatics

Topics:

• Principles of language design such as orthogonality

• Evaluation order, precedence, and associativity

• Eager vs. delayed evaluation

• Defining control and iteration constructs

• External calls and system libraries

Learning outcomes:

1. Discuss the role of concepts such as orthogonality
and well-chosen defaults in language design. [Famil-
iarity]

2. Use crisp and objective criteria for evaluating language-
design decisions. [Usage]

3. Give an example program whose result can differ un-
der different rules for evaluation order, precedence,
or associativity. [Usage]

4. Show uses of delayed evaluation, such as user-
defined control abstractions. [Familiarity]

5. Discuss the need for allowing calls to external calls
and system libraries and the consequences for lan-
guage implementation. [Familiarity]

7

5.1.4 Software Development Fundamentals / Development Meth-
ods

Topics:

• Program comprehension
• Program correctness

– Types of errors (syntax, logic, run-time)
– The concept of a specification
– Defensive programming (e.g. secure coding, ex-
ception handling)

– Code reviews
– Testing fundamentals and test-case generation
– The role and the use of contracts, including pre-
and post-conditions

– Unit testing
• Simple refactoring
• Modern programming environments

– Code search
– Programming using library components and their APIs

• Debugging strategies
• Documentation and program style

Learning outcomes:

1. Trace the execution of a variety of code segments and write
summaries of their computations. [Assessment]

2. Explain why the creation of correct program compo-
nents is important in the production of high-quality
software. [Familiarity]

3. Identify common coding errors that lead to insecure pro-
grams (e.g., buffer overflows, memory leaks, malicious code)
and apply strategies for avoiding such errors. [Usage]

4. Conduct a personal code review (focused on common coding
errors) on a program component using a provided checklist.
[Usage]

5. Contribute to a small-team code review focused on com-
ponent correctness. [Usage]

8

6. Describe how a contract can be used to specify the behavior
of a program component. [Familiarity]

7. Refactor a program by identifying opportunities to apply
procedural abstraction. [Usage]

8. Apply a variety of strategies to the testing and debugging
of simple programs. [Usage]

9. Construct, execute and debug programs using a
modern IDE and associated tools such as unit test-
ing tools and visual debuggers. [Usage]

10. Construct and debug programs using the standard libraries
available with a chosen programming language. [Usage]

11. Analyze the extent to which another programmer’s code
meets documentation and programming style standards.
[Assessment]

12. Apply consistent documentation and program style stan-
dards that contribute to the readability and maintainability
of software. [Usage]

5.1.5 Software Engineering / Tools and Environments

Topics:

• Software configuration management and version
control

• Release management

• Requirements analysis and design modeling tools

• Testing tools including static and dynamic analysis
tools

• Programming environments that automate parts of program
construction processes (e.g., automated builds)

– Continuous integration

• Tool integration concepts and mechanisms

Learning Outcomes:

1. Describe the difference between centralized and dis-
tributed software configuration management. [Famil-
iarity]

9

2. Describe how version control can be used to help
manage software release management. [Familiarity]

3. Identify configuration items and use a source code
control tool in a small team-based project. [Usage]

4. Describe how available static and dynamic test tools
can be integrated into the software development en-
vironment. [Familiarity]

5. Describe the issues that are important in selecting a
set of tools for the development of a particular soft-
ware system, including tools for requirements tracking,
design modeling, implementation, build automation, and
testing. [Familiarity]

6. Demonstrate the capability to use software tools in
support of the development of a software product of
medium size. [Usage]

10

	Overview
	Big picture ideas
	Secondary learning objectives
	Detailed topics
	ACM Curriculum Guidelines for CS UG Degree Programs
	Relevant Knowledge Areas (KAs)
	Programming Languages / Functional Programming
	Programming Languages / Advanced Programming Constructs
	Programming Languages / Language Pragmatics
	Software Development Fundamentals / Development Methods
	Software Engineering / Tools and Environments

