
1. Function Type Declarations (12 points):

For each of the following function definitions, correctly complete the preceding type declaration.

Be sure to include any necessary class constraints.

(A)
mystery1 :: (a -> b -> c) -> [a] -> [b] -> [c]

mystery1 g _ [] = []

mystery1 g [] _ = []

mystery1 g (x:xs) (y:ys) = g x y : mystery1 g xs ys

(B)
mystery2 :: [(a -> b -> c)] -> a -> b -> [c]

mystery2 gs x y = map (\h -> h y) $ map (\g -> g x) gs

(C)
mystery3 :: (Applicative a, Ord b) => a b -> a b -> a b

mystery3 x y = pure max <*> x <*> y

(D)
mystery4 :: (Monad m) => m a -> (a -> m b) -> (a -> b -> c) -> m c

mystery4 x f g = do m <- x

n <- f m

return $ g m n

Page 2 of 9



2. Defining Functors, Applicatives, and Monads (12 points):

Consider the following data type:

data Box a = Gift a | ReGift (Box a) deriving Show

The Box type can be used to keep track of the contents of a gift box, and additionally reflect how

many times the contents have been unpacked and “re-gifted”. E.g.,

eg_box_1 = Gift "A brand new sweater"

eg_box_2 = ReGift (Gift "A slightly used sweater")

eg_box_3 = ReGift (ReGift (ReGift (Gift "A much used sweater")))

On the next page you are to implement the Functor, Applicative, and Monad typeclass instances

for the Box type. The Applicative and Monad functions will automatically “wrap” Boxes in

additional layers of ReGift containers as they are combined together and sequenced.

The following examples show the fmap, <*>, and >>= operators in action, along with their results

(in comments):

fmap ("New "++) (Gift "Jeans")

--=> Gift "New Jeans"

fmap ("Used "++) (ReGift (ReGift (Gift "Jeans")))

--=> ReGift (ReGift (Gift "Used Jeans"))

Gift ("T-Shirt and "++) <*> Gift ("Jeans")

--=> ReGift (ReGift (Gift "T-Shirt and Jeans"))

ReGift (Gift ("T-Shirt and "++)) <*> ReGift (Gift ("Jeans"))

--=> ReGift (ReGift (ReGift (ReGift (Gift "T-Shirt and Jeans"))))

do g <- Gift "Jeans"

return g

--=> ReGift (Gift "Jeans")

do g1 <- Gift "Jeans"

g2 <- Gift ("New-ish " ++ g1)

g3 <- Gift ("Sorta " ++ g2)

g4 <- Gift ("Kinda " ++ g3)

return g4

--=> ReGift (ReGift (ReGift (ReGift (Gift "Kinda Sorta New-ish Jeans"))))

Page 3 of 9



instance Functor Box where

-- fmap :: (a -> b) -> Box a -> Box b

fmap f (Gift x) = Gift $ f x

fmap f (ReGift b) = ReGift $ fmap f b

instance Applicative Box where

pure x = Gift x

-- (<*>) :: Box (a -> b) -> Box a -> Box b

Gift f <*> Gift x = ReGift $ ReGift $ Gift $ f x

Gift f <*> ReGift b = ReGift $ Gift f <*> b

ReGift b <*> c = ReGift $ b <*> c

instance Monad Box where

return = pure

-- (>>=) :: Box a -> (a -> Box b) -> Box b

Gift x >>= f = ReGift $ f x

ReGift b >>= f = ReGift $ b >>= f

Page 4 of 9



3. Using the State Monad (16 points):

Consider the following functions that return State monads.

scroll :: Int -> State [a] a

scroll n = State $ \xs -> let n' = if n >= 0 then n else length xs + n

ns = (drop n' xs) ++ (take n' xs)

in (head ns, ns)

put :: a -> State [a] a

put x' = State $ \(x:xs) -> (x',x':xs)

alter :: (a -> a) -> State [a] a

alter f = State $ \(x:xs) -> let y = f x in (y,y:xs)

For each of the following, determine the return value of the call to runState. Note that the

definition of the State monad is provided at the end of the exam.

(A) runState (put 55) [1..10]

--=> (55,[55,2,3,4,5,6,7,8,9,10])

(B) runState (pure (\x y -> (x,y)) <*> scroll 3 <*> alter (3*)) [1..10]

--=> ((4,12),[12,5,6,7,8,9,10,1,2,3])

(C) sC = do

scroll 2

alter reverse

runState sC ["hello", "hola", "aloha", "bonjour"]

--=> ("ahola",["ahola","bonjour","hello","hola"])

(D) sD = do

a <- scroll 1

scroll 2

b <- alter (+a)

c <- scroll 4

alter (*b)

scroll (-3)

put c

runState sD [1..10]

--=> (8,[8,6,7,48,9,10,1,2,3,6])

Page 5 of 9



4. Monadic Parsing (12 points):

Consider the following grammar for a simple language for looping and printing:

prog ::= block

block ::= BEGIN statement* END

statement ::= loop stmt | print stmt

loop stmt ::= LOOP natural (statement | block)
print stmt ::= PRINT string

I.e., a program (prog) is a block of zero or more statements enclosed within BEGIN and END tokens.

Each statement is either a loop stmt (starting with LOOP followed by a natural number then by a

statement or block), or a print stmt (starting with PRINT and followed by a string).

The following are some sample programs that adhere to this grammar:

BEGIN

PRINT "hello world"

END

BEGIN

LOOP 2

BEGIN

PRINT "hello"

PRINT "world"

END

END

BEGIN

LOOP 10

BEGIN

PRINT "1"

LOOP 20

LOOP 30

PRINT "2"

END

PRINT "3"

LOOP 40

PRINT "4"

END

On the next page, implement prog, which is a parser for programs as specified above. You may

define as many other parsers as you wish to call from prog. The Parser monad and related

functions are given at the end of the exam — note that we have additionally provided the

quotedString parser, which will correctly parse double-quote enclosed characters.

Note that your implementation need only successfully parse input strings that conform to the above

grammar (and fail otherwise). You do not need to evaluate the input string in any other way.

Page 6 of 9



prog :: Parser ()

prog = block

block :: Parser ()

block = do symbol "BEGIN"

many statement

symbol "END"

return ()

statement :: Parser ()

statement = loop_stmt <|> print_stmt

loop_stmt :: Parser ()

loop_stmt = do symbol "LOOP"

natural

statement <|> block

return ()

print_stmt :: Parser ()

print_stmt = do symbol "PRINT"

quotedString

return ()

Page 7 of 9


