
CS 450 : Operating Systems
Michael Lee <lee@iit.edu>

Deadlock

- New Oxford American Dictionary

deadlock |ˈdedˌläk|
noun
1 	 [in sing.] a situation, typically one involving opposing
	 parties, in which no progress can be made : an attempt to
	 break the deadlock.

Traffic Gridlock

Software Gridlock

mtx_A.lock()
mtx_B.lock()

 # critical section

mtx_B.unlock()
mtx_A.unlock()

mtx_B.lock()
mtx_A.lock()

 # critical section

mtx_B.unlock()
mtx_A.unlock()

§ Necessary conditions
for Deadlock

i.e., what conditions need to be true (of some
system) so that deadlock is possible?
(not the same as causing deadlock!)

I. Mutual Exclusion
- resources can be held by processes in  

a mutually exclusive manner

II. Hold & Wait
- while holding one resource (in mutex),  

a process can request another resource

III. No Preemption
- one process can not force another to give

up a resource; i.e., releasing is voluntary

IV. Circular Wait
- resource requests and allocations create a

cycle in the resource allocation graph

§ Resource Allocation Graphs

Process :

Resource :

Request :

Allocation :

P1 P2 P3

R1 R2

R3

Circular wait is absent = no deadlock

All 4 necessary conditions in place; Deadlock!

P1 P2 P3

R1 R2

R3

in a system with only single-instance resources,
necessary conditions ⇔ deadlock

Cycle without Deadlock!

P1 P2

P4

R1

R2

P3

not practical (or always possible) to detect
deadlock using a graph

— but convenient to help us  
reason about things

§ Approaches to
Dealing with Deadlock

1. Ostrich algorithm
(ignore it and hope it never happens)

2. Prevent it from occurring (avoidance)
3. Detection & recovery

§ Deadlock avoidance

¶ Approach 1: eliminate necessary
 condition(s)

Mutual exclusion?
- eliminating mutex requires that all

resources be shareable
- when not possible (e.g., disk, printer), can

sometimes use a spooler process

but what about semaphores, file locks, etc.?
- not all resources are spoolable
- cannot eliminate mutex in general

Hold & Wait?
- elimination requires resource requests to be

all-or-nothing affair
- if currently holding, needs to release all

before requesting more

in practice, very inefficient  
& starvation is possible!
— cannot eliminate hold & wait

No preemption?
- alternative: allow process to preempt each

other and “steal” resources
- mutex locks can not be counted on to

stay locked!
- in practice, cannot eliminate this either!

Circular Wait is where it’s at.

simple mechanism to prevent wait cycles:
- order all resources
- require that processes request  

resources in order

but impractical — can not count on processes
to need resources in a certain order

… and forcing a certain order can  
result in poor resource utilization

¶ Approach 2: intelligently prevent
 circular wait

possible to create a cycle (with one edge)?

P1 P2

R1

R2

possible to create a cycle (with one edge)?

P1 P2

R1

R2

P1 P2

R1

R2

it’s quite possible that P2 won’t need R2, or
maybe P2 will release R1 before requesting R2,
but we don’t know if/when…

preventing circular wait means avoiding a state
where a cycle is an imminent possibility

P1 P2

R1

R2

to predict deadlock, we can ask processes to
“claim” all resources they need in advance

P1 P2

R1

R2

P1 P2

R1

R2

graph with “claim edges”

P1 P2

R1

R2

P2 requests R1

convert to allocation edge; no cycle

P1 P2

R1

R2

P1 requests R2

P1 P2

R1

R2

if we convert to an allocation edge ...

P1 P2

R1

R2

cycle involving claim edges!

P1 P2

R1

R2

means that if processes fulfill their claims,
we cannot avoid deadlock!

P1 P2

R1

R2

i.e., P1 → R1, P2 → R2

P1 P2

R1

R2

P1 → R2 should be blocked by the kernel,
even if it can be satisfied with available resources

P1 P2

R1

R2

this is a “safe” state … i.e., no way a process can
cause deadlock directly (i.e., without OS alloc)

P1 P2

R1

R2

idea: if granting an incoming request would
create a cycle in a graph with claim edges, deny
that request (i.e., block the process)

— approve later when no cycle would occur

P2 releases R1

P1 P2

R1

R2

now ok to approve P1 → R2 (unblock P1)

P1 P2

R1

R2

should we still deny P1 → R2?

P1 P2

R1

R2

P3

problem: this approach may incorrectly
predict imminent deadlock when resources
with multiple instances are involved

requires a more general definition of “safe state”

P1 P2

R1

R2

P3

¶ Banker’s Algorithm

(by Edsger Dijkstra)

basic idea:
- define how to recognize system “safety”
- whenever a resource request arrives:

- simulate allocation & check state
- allocate iff simulated state is safe

some assumptions we need to make:
1. a non-blocked process holding a resource

will eventually release it
2. it is known a priori how many instances of

each resource a given process needs

- There exists a sequence <P1, P2, ..., Pn>,
where each Pk can complete with:
- currently available (free) resources
- resources held by P1...Pk-1

Safe State

Processes P1…Pn, Resources R1…Rm:
 available[j] = num of Rj available
 max[i][j] = max num of Rj required by Pi
 allocated[i][j] = num of Rj allocated to Pi
 need[i][j] = max[i][j] - allocated[i][j]

Data Structures

1. finish[i] ← false ∀ i ∈ 1…n 
work ← available

2. Find i : finish[i] = false & need[i][j] ≤ work[j] ∀ j  
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true  
Go to 2.

4. Safe state iff finish[i] = true ∀ i

Safety Algorithm

incoming request represented by request array
 request[j] = num of resource Rj requested

(a process can require multiple instances of
more than one resource at a time)

1. If request[j] ≤ need[k][j] ∀ j, continue, else error

2. If request[j] ≤ available[j] ∀ j, continue, else block
3. Run safety algorithm with:

- available ← available - request
- allocated[k] ← allocated[k] + request
- need[k] ← need[k] - request

Processing Request from Pk:

if safety algorithm fails, do not allocate, even if
resources are available!

— either deny request or block caller

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

0 1 0

2 0 0

3 0 2

2 1 1

0 0 2

Allocated

A B C

3 3 2

Available

A B C

7 4 3

1 2 2

6 0 0

0 1 1

4 3 1

NeedMax

• Safe state: <P1, P3, P0, P2, P4>
• P3 requests <0, 0, 1>
• P0 requests <0, 3, 0>

3 resources: A (10), B (5), C (7)

¶ Banker’s algorithm discussion

1. Efficiency?
- how fast is it?
- how often is it run?

1. finish[i] ← false ∀ i ∈ 1…n 
work ← available

2. Find i : finish[i] = false & need[i][j] ≤ work[j] ∀ j  
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true  
Go to 2.

4. Safe state iff finish[i] = true ∀ i

for up to N processes, check M resources

loop for N processes

O(N∙N∙M) = O(N2∙M)

how often to run?
- need to run on every resource request
- can’t relax this, otherwise system might

become unsafe!

2. Assumption #1: processes will eventually
release resources

- assuming well-behaved processes
- not 100% realistic, but what else to do?

3. Assumption #2: a priori knowledge of max
resource requirements

- highly unrealistic
- process resource needs are dynamic!
- without this assumption, deadlock

prevention becomes much harder…

¶ Aside: decision problems,
 complexity theory
 & the halting problem

a decision problem

input

decision algorithm

yes no

e.g., is X evenly divisible by Y?
 is N a prime number?
 does string S contain pattern P?

a lot of important problems can be reworded
as decision problems:
e.g., traveling salesman problem (find the
shortest tour through a graph)
 ⇒ is there a tour shorter than L?

complexity theory classifies decision problems
by their difficulty, and draws relationships
between those problems & classes

class P: solutions to these problems can be
found in polynomial time (e.g., O(N2))

class NP: solutions to these problems can be
verified in polynomial time

— but finding solutions may be harder! 
(i.e., superpolynomial)

big open problem in CS:
P = NP?

why is this important?

all problems in NP can be reduced to another
problem in the NP-complete class, 

and all problems in NP-complete can be
reduced to each other)

if you can prove that any NP-complete problem
is in P, then all NP problems are in P!

(more motivation: you also win $1M)

if you can prove P ≠ NP, we can stop looking for
fast solutions to many hard problems

(motivation: you still win $1M)

a decision problem

input

decision algorithm

yes no

deadlock prevention

resources available,
request & allocations,

running programs

will the system
deadlock?

yes no

the halting problem

description of a
program and its inputs

will the system halt
(or run forever)?

yes no

e.g., write the function:

halt(f) ! bool
- return true if f will halt
- return false otherwise

def halt(f):
 # your code here

def loop_forever():
 while True: pass

def just_return():
 return True

halt(loop_forever) # => False

halt(just_return) # => True

#$^%&#@!!!

def halt(f):
 # your code here

def gotcha():
 if halt(gotcha):
 loop_forever()
 else:
 just_return()

halt(gotcha)

proof by contradiction:  
the halting problem is undecidable

generally speaking, deadlock prediction can be
reduced to the halting problem

i.e., determining if a system is deadlocked is, in
general, provably impossible!!

§ Deadlock Detection
& Recovery

¶ Basic approach: cycle detection

e.g., Tarjan’s strongly connected components
algorithm; O(|V|+|E|)

need only run on mutex resources and
“involved” processes

… still, would be nice to reduce the  
size of the resource allocation graph

actual resources involved are unimportant —
only care about relationships between processes

P1 P2 P3

P5

P4

Resource Allocation Graph

P1 P2 P3

P4

P5

“Wait-for” Graph

Substantial optimization!

P1 P2 P3

P5

P4

P1 P2 P3

P4

P5

… but not very useful when we have multi-
instance resources (false positives are likely)

¶ Deadlock detection algorithm

important: do away with requirement of 
a priori resource need declarations

new assumption: processes can complete with 
current allocation + all pending requests
i.e., no future requests

unrealistic! (but we have no crystal ball)

keep track of all pending requests in:
 request[i][j] = num of Rj requested by Pi

1. finish[i] ← all_nil?(allocated[i]) ∀ i ∈ 1…n 
work ← available

2. Find i: finish[i] = false & request[i][j] ≤ work[j] ∀ j  
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true 
Go to 2.

4. If finish[i] ≠ true ∀ i, system is deadlocked.  

Detection algorithm ignore processes  
that aren’t allocated
anything

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 3

P3 2 1 1

P4 0 0 2

A B C

0 0 0

2 0 2

0 0 0

1 0 0

0 0 2

Allocated Request

A B C

0 0 0

Available

3 resources: A (7), B (2), C (6)

• Not deadlocked: <P0, P2, P1, P3, P4>
• P2 requests <0, 0, 1>

¶ Discussion

1. Speed?

1. finish[i] ← all_nil?(allocated[i]) ∀ i ∈ 1…n 
work ← available

2. Find i: finish[i] = false & request[i][j] ≤ work[j] ∀ j  
If none, go to 4.

3. work ← work + allocated[i]; finish[i] ← true 
Go to 2.

4. If finish[i] ≠ true ∀ i, system is deadlocked.

Still O(N∙N∙M) = O(N2∙M)

2. When to run?

… as seldom as possible!
tradeoff: the longer we wait between checks,
the messier resulting deadlocks might be

3. Recovery?

One or more processes must release resources:
- via forced termination
- resource preemption
- system rollback

cool, but how?

Resource preemption only possible with
certain types of resources

- no intermediate state
- can be taken away and returned (while

blocking process)
- e.g., mapped VM page

Rollback requires process checkpointing:
- periodically autosave/reload process state
- cost depends on process complexity
- easier for special-purpose systems

How many to terminate/preempt/rollback?
- at least one for each disjoint cycle

- non-trivial to determine how many cycles
and which processes!

Selection criteria (who to kill) = minimize cost
- # processes
- completed run-time
- # resources held / needed
- arbitrary priority (no killing system

processes!)

Dealing with deadlock is hard!

Moral of this and the concurrency material:
- be careful with concurrent resource sharing
- use concurrency mechanisms that avoid

explicit locking whenever possible!

