
What is an OS?
CS 450: Operating Systems 
Michael Lee <lee@iit.edu>



Agenda
- Road to the modern OS


- OS responsibilities


- OS privileges


- OS organization


- Summary



§ Road to the modern OS



1950s: Batch processing
- A program is completely defined by a “batch”  

of punchcards


- Batches are manually fed into mainframes, which execute a single batch 
at a time (a “job”)


- Programmer defines any and all routines needed for the job


- E.g., for controlling and accessing specific I/O devices



1950s-1960s: Support libraries
- Useful, reusable routines (e.g., for math, I/O) 

distributed as collections of punchcards


- These routines can be “linked” (manually)  
into programs without much modification


- First support libraries = the original OSes


- No standardization!



1960s: Automatic batch processing
- To keep up with faster processors, reading and starting/transitioning 

between jobs require automation


- “Monitor” programs also keep track of usage, resources expended, etc.


- Grew to become runtime libraries that automatically manage the 
execution of multiple batches of jobs (in sequence)



Pros/Cons of Batch processing
- Pros


- Full use of hardware


- No worrying about other jobs 
during execution

- Cons


- No interactivity


- No live debugging


- No feedback loop


- Poor hardware utilization


- Do everything yourself!



1970s: Rise of Timesharing
- To let many users share a computer concurrently, software is needed to 

automatically save/restore context between jobs


- Resources (e.g., CPU & memory) are virtualized 

- Jobs are isolated and protected from each other


- Resulted in a lot of system overhead, but offset  
by interactivity and improved hardware utilization


- Development and availability of UNIX on  
mainframes and “minicomputers”



1980s: Era of (some) bad ideas
- Personal computers (microcomputers) become widely available


- Underpowered compared to systems that ran contemporary 
timesharing OSes such as UNIX


- PC OSes (e.g., MS-DOS, Mac OS) were dumbed down in many ways


- Lack of memory protection


- Cooperative multitasking vs. preemptive multitasking


- Poor system stability, and chaos for developers!



1990s-Present: Modern OSes
- More powerful PCs make preemptively multitasked OSes generally viable


- High degrees of virtualization, isolation, and concurrency


- Exploding market for varied I/O devices and peripherals


- OS support for “plug and play” third-party device drivers


- Large, sophisticated system call interfaces


- Standards are created for portability across  
OSes (e.g., POSIX)



§ OS responsibilities



operating system 
noun 
the software that supports a computer's basic 
functions, such as scheduling tasks, executing 
applications, and controlling peripherals.

New Oxford American Dictionary



Breaking down the definition
- “tasks and applications”	= running programs 
	 = processes 

- instructions & data stored in memory; executed and fetched on the CPU 

- “peripherals” = I/O devices (hardware)


- OS raison d’être: facilitate process execution and access to hardware



Resource management
- CPU, Memory, I/O devices are limited resources


- i.e., possible for	num processes > num CPU cores, 
	 total memory required > physical RAM, 
	 file accesses > disk read/write heads


- OS acts as a high level resource manager


- So processes can focus on their own tasks, the OS ideally manages 
and allocates resources in an unobtrusive, transparent way



Virtualization
- A powerful model for resource allocation is virtualization:


- Each process behaves as though it is accessing its own private CPU(s), 
address space, I/O device, etc.


- Behind the scenes, the OS maintains this illusion by allocating and 
multiplexing resources across all concurrently executing processes


- Effectively creates an idealized machine for each process



Concurrency
- Concurrency presents its own hurdles and techniques for dealing with them


- Concurrent processes must by protected/isolated from each other


- Nondeterministic execution and requests/access to resources creates race 
conditions within the OS and between processes


- Dealing with these issues requires special tools 
and techniques RA

RB

P0

P1

allocated

allocated

requestrequest deadlock



Persistence
- CPU and Memory state are volatile


- I/O devices provide support for persistent storage


- Presents a host of new issues:


- How to namespace persistent data?


- What APIs are needed for accessing persistent data?


- How to efficiently manage and access data on slow HDDs?


- If processes crash when updating persistent store, how to guarantee 
consistency?



How to achieve these?
- To implement virtualization, concurrency, persistence (and other goals), 

the OS relies on hardware assistance


- All modern ISAs have built-in mechanisms to support OS tasks


- Of paramount importance: hardware features that allow the OS to 
maintain exclusive access to privileged operations and structures


- To prevent accidental/malicious process behavior from interfering with 
other processes or the OS itself — i.e., ensuring robustness & isolation



§ OS privileges



Can we do this without HW?
- I.e., can you write a program (the OS) to execute other (user) programs, 

and guarantee isolation and robustness without hardware support?


- Consider some common (local) security vulnerabilities:


- address fabrication


- code injection


- return-oriented programming



Software mitigation
- Software mechanisms:


- Static verification (e.g., type-checking)


- Run-time tools (e.g., garbage collection, exception handling, VM)


- Very hard to guard against all security vulnerabilities in software alone!


- Basic issue: once untrusted/dangerous code starts running on the 
processor, how can we prevent it from doing whatever it wants?



Hardware support
- All modern CPUs support, at minimum, two “modes” of operation


- Privileged/Supervisor mode: all features accessible


- Including special operations and access to I/O devices, control registers, 
and all of memory


- User mode: only “safe” operations and process-local data accessible


- System boots to OS in privileged mode, which runs processes in user mode


- Mode switches must be rigorously enforced! 



Mode transitions
- A common mechanism for switching between privileged & user modes is 

the interrupt (either software or hardware triggered)


- E.g., system call / trap (starting in user mode):


1.Process executes special int instruction with interrupt # as argument


2.Hardware looks up associated OS entry point from interrupt table


- Interrupt table is managed by OS


3.Hardware switches to privileged mode before running OS handler


- Implements a hardware-assisted application binary interface (ABI)



OS exists to serve
- OS carries out privileged operations on behalf of user processes


- Also keeps up the illusion of various abstractions that simply process 
execution (e.g., concurrency and non-overlapping address spaces)


- Important: privileged/supervisor mode is only for the OS!


- Administrator / “root” user do not run processes in privileged mode


- All processes run in user mode!


- But does all of the OS?



§ OS organization



What is privileged?
- Which portions/modules of an OS will be run in “privileged” mode?


- “Standard OS modules”:


- virtual memory


- scheduler


- device drivers


- file system


- IPC



The “Kernel”
- Privileged modules constitute the “kernel” of the operating system


- First program loaded into memory, and always memory-resident


- Handles all privileged operations


- Hardware access


- Updating special/control registers


- Running special instructions


- Works in close concert with architecture features (e.g., clock interrupt)



Monolithic architecture
- All primary modules and I/O device drivers run in privileged mode


- Relatively large, permanent memory footprint


- No mode transitions when jumping between different pieces of the OS


- Very little system overhead


- Because the privileged codebase is very large, harder to verify and 
guarantee system robustness!


- If one piece of the OS crashes, all of it does



Microkernel architecture
- Only essential services are privileged; everything else runs in user mode


- Relatively small memory footprint


- Microkernel functions in part as a messenger between different modules 
running in user mode


- Jumping between different OS modules may require mode switch


- Higher system overhead (though clever optimizations exist)


- Easier to verify and guarantee robustness


- If a user-level OS module crashes, just restart it



courtesy of Wikimedia Commons



… suffice it to say that among the people 

who actually design operating systems, the debate is 
essentially over. Microkernels have won

- Andrew Tanenbaum 
(noted OS researcher)



The whole “microkernels are simpler” argument is just 
bull, and it is clearly shown to be bull by the fact that  
whenever you compare the speed of development of a 
microkernel and a traditional kernel, the traditional 
kernel wins. By a huge amount, too.

- Linus Torvalds 
(chief architect, Linux)



Beyond the debate
- Yet another route: why not just implement OS as a low-level library?


- Loss of isolation, but big efficiency gain


- Used by many embedded systems


- And what about hosting multiple OSes on a single machine? 


- Useful/feasible on modern multi-core machines


- Hypervisors provide low-level virtual machines to guest OSes


- Yet another layer of isolation!



Summary
- Why do we need an OS?


- To facilitate process execution and simplify/control access to hardware


- What does an OS do?


- Provide virtualization, concurrency, and persistence


- How is an OS organized?


- Separation of kernel (privileged) and user modules — architecture of 
kernel is an exercise in tradeoffs!


