Name: _________________________

AID: _________________________

CS 340 Spring 2019
Final Exam

Instructions:

• This exam is closed-book, closed-notes. Computers of any kind are not permitted.
• Write your final answers, tidily, in the boxes provided. Scratch paper is attached at the end of the exam.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(/9) :</td>
</tr>
<tr>
<td>2</td>
<td>(/12) :</td>
</tr>
<tr>
<td>3</td>
<td>(/12) :</td>
</tr>
<tr>
<td>4</td>
<td>(/12) :</td>
</tr>
<tr>
<td>5</td>
<td>(/12) :</td>
</tr>
<tr>
<td>TOTAL</td>
<td>(/57) :</td>
</tr>
</tbody>
</table>
1. Evaluating Folds (9 points):

Show the result of evaluating each of the following expressions involving either `foldr` or `foldl`.

(A) \[
\text{foldl} \ (\langle y_1, y_2 \rangle \ x \rightarrow ((\text{min} \ x \ y_1), (\text{max} \ x \ y_2))) \\
\quad (100, 0) \\
\quad [5, 10..95]
\]

(B) \[
\text{foldr} \ \text{iter} \ ["] \ "hello"
\quad \text{where} \ \text{iter} \ x \ y = \text{map} \ (x:) \ ("":y)
\]

(C) \[
\text{foldl} \ \text{iter} \ \text{id} \ ["ad", "id", "al"] \ "CS"
\quad \text{where} \ \text{iter} \ r \ x = \ \lambda \ w \rightarrow \ r \ (w \ ++ \ "-" \ ++ \ \text{reverse} \ x)
\]
2. Defining Functors, Applicatives, and Monads (12 points):

Consider the following data type:

```haskell
data Weighted a = WZero a | WVar Int a
```

The `Weighted` type is used to assign arbitrary integer weights to values (`WZero` implies a weight of 0, while `WVar` lets us attach an `Int` weight). When `Weighted` values are combined via `Applicative` or `Monad` functions, weights are simply summed.

Examples of using `Weighted` values as Functors, Applicatives, and Monads follow:

- `fmap reverse (WVar 5 "hello")` -- > `WVar 5 "olleh"`
- `pure reverse <*> pure "hello"` -- > `WZero "olleh"
- `(++) <$> WVar 2 "hello" <*> WVar 3 "world"` -- > `WVar 5 "helloworld"
- `do v1 <- WVar 3 "This"
 v2 <- WZero "Is"
 v3 <- WVar 7 "An"
 v4 <- WZero "Example"
 return (v1++v2++v3++v4)` -- > `WVar 10 "ThisIsAnExample"

Define the `Weighted` Functor, Applicative, and Monad instances on the next page.
instance Functor Weighted where
 -- fmap :: (a -> b) -> Weighted a -> Weighted b

instance Applicative Weighted where
 -- pure :: a -> Weighted a
 -- (<*>) :: Weighted (a -> b) -> Weighted a -> Weighted b

instance Monad Weighted where
 return = pure
 -- (>>=) :: Weighted a -> (a -> Weighted b) -> Weighted b
3. Using the State Monad (12 points):

Consider the following functions that return State monads.

\[
\begin{align*}
fwd :: \text{Int} &\rightarrow \text{State} \ [a] \ () \\
fwd \ n &\equiv \text{State} \ \lambda \ xs \rightarrow ((), \ \text{drop} \ n \ \text{xs} ++ \ \text{take} \ n \ \text{xs}) \\
rew :: \text{Int} &\rightarrow \text{State} \ [a] \ () \\
rew \ n &\equiv \text{State} \ \lambda \ xs \rightarrow \text{let} \ n' = \text{length} \ \text{xs} - n \\
&\quad \text{in} \ ((), \ \text{drop} \ n' \ \text{xs} ++ \ \text{take} \ n' \ \text{xs}) \\
swp :: a &\rightarrow \text{State} \ [a] \ a \\
swp \ x &\equiv \text{State} \ \lambda \ (y:ys) \rightarrow (y, \ x:ys) \\
red :: (a &\rightarrow a &\rightarrow a) &\rightarrow \text{State} \ [a] \ a \\
red \ f &\equiv \text{State} \ \lambda \ l@(x:xs) \rightarrow (\text{foldr} \ f \ x \ \text{xs}, \ l)
\end{align*}
\]

For each of the following, determine the return value of the call to \text{run}. Note that the definition of the \text{State} monad is provided at the end of the exam.

(A) \quad \text{run} \ (\text{fwd} \ 3) \ [1..10]

(B) \quad \text{run} \ (\text{fmap} \ (+50) \ (\text{swp} \ 8)) \ [1..10]
(C) \[\text{run } (\text{pure } (*)) \leftrightarrow (\text{swp 10}) \leftrightarrow (\text{red } (-))) [2, 4, 7]\]

(D) \[\text{run } (\text{do } x <- \text{swp } "\text{the}"\]
\[\text{fwd 1}\]
\[y <- \text{swp } "\text{red}"\]
\[\text{rew 4}\]
\[\text{fwd 3}) ["\text{smurfs"}, "\text{are"}, "\text{small"}, "\text{and"}, "\text{blue}]\]
4. Monadic Parsing (12 points):

For this problem you are to implement a monadic parser for a simple subset of HTML, where valid input consists of a properly formatted element, identified by matching opening and closing tags of the form `<TAGNAME>` and `</TAGNAME>`. Tag names can be made up of only alphabetical characters (lower and uppercase). An element can contain zero or more elements, and elements can also be nested.

After parsing valid input, your parser should return the names of the elements in a tree that mimics the structure of the input, where the tree data type is defined as follows:

```
data Tree a = Node a [Tree a]
```

Below are sample valid inputs, each accompanied by the tree obtained by parsing it (note that indentation is not important to the syntax):

```
<foo></foo>
-- > Node "foo" []

<a>
  <b>
    <c></c>
  </b>
</a>
-- > Node "a" [Node "b" [Node "c" []]]

<a>
  <b></b>
  <c></c>
</a>
-- > Node "a" [Node "b" [],Node "c" []]
```

On the next page, implement the parser `element`. You may define as many other parsers as you wish to use in `element`. The `Parser` monad and related functions are given at the end of the exam.

A parser that succeeds on valid input and fails on invalid input will receive 75% of the points; additionally returning a correct tree will earn full points.
element :: Parser (Tree String)
element =
5. Evaluating Search (12 points):

For this problem we’ll consider a simple type of “sliding pieces” puzzle, which consists of 2 or more rows of values. The values in each row can be shifted to the left to change their ordering. The puzzle is considered solved when the values across all rows have the same ordering.

E.g., the puzzle ["ABCD", "DABC", "ABCD"] has three rows of values, each row containing 4 characters. To solve this puzzle, we could shift the row "DABC" once, which takes the 'D' from the front and moves it to the end of the row — the resulting row, "ABCD", matches the others, and so we are done.

Below we define types and a function used to represent such puzzles and to try out moves. Each entry in a move list corresponds to the index of a row to be shifted once.

```haskell
type Puzzle = [String]
type PuzzleMoves = [Int]
runMoves :: Puzzle -> PuzzleMoves -> Puzzle
runMoves p sol = foldl flipPuzz p sol
  where flipPuzz p n = let row = p !! n
                      row' = drop 1 row ++ take 1 row
                      in take n p ++ [row'] ++ drop (n+1) p
```

The following are sample calls to `runMoves`, along with their results (illustrating three different ways of solving the puzzle described above):

- `runMoves ["ABCD", "DABC", "ABCD"] [0,2,1,1]` -- > ["BCDA", "BCDA", "BCDA"]
- `runMoves ["ABCD", "DABC", "ABCD"] [0,0,0,2,2,2]` -- > ["DABC", "DABC", "DABC"]

The (partly defined) function `puzzleSearch` searches for a solution to a provided puzzle using `bestFirstSearch` (given at the end of the exam). Answer the questions on the following page based on `puzzleSearch`.

```haskell
puzzleSearch :: Puzzle -> Maybe PuzzleMoves
puzzleSearch puzz = bestFirstSearch goal succ score []
  where succ sol = map (\i -> (sol++[i])) [0..(length puzz-1)]
        goal sol = undefined
        score sol = undefined
```

Page 9 of 13
(A) Implement a suitable goal function for puzzleSearch. (You may use runMoves in your implementation.)

```haskell
goal sol =
```

(B) Implement a score function for puzzleSearch which will enable it to find a solution that takes a minimal number of moves.

```haskell
score sol =
```

(C) Consider the following definition of score:

```haskell
score sol = let puzz' = runMoves puzz sol
            in length $ filter (/= head puzz') (tail puzz')
```

Assuming that the goal function is working correctly, what is the result of the following call to puzzleSearch, using the above score function?

```haskell
puzzleSearch ["*...", ".*..", "....", ".*.", "...."]
```
Source Listing

-- State Monad

data State s a = State { run :: s -> (a,s) }

instance Functor (State s) where
 fmap f st = State $ \s -> let (x,s') = run st s
 in (f x, s')

instance Applicative (State s) where
 pure x = State $ \s -> (x,s)
 sf <*> sx = State $ \s -> let (f,s') = run sf s
 in run (f <$> sx) s'

instance Monad (State s) where
 st >>= f = State $ \s -> let (x,s') = run st s
 in run (f x) s'

-- Parser Monad

data Parser a = Parser { parse :: String -> Maybe (a, String) }

instance Functor Parser where
 fmap f p = Parser $ \s -> case parse p s of
 Nothing -> Nothing
 Just (x, s') -> Just (f x, s')

instance Applicative Parser where
 pure x = Parser $ \s -> Just (x, s)
 pf <*> px = Parser $ \s -> case parse pf s of
 Nothing -> Nothing
 Just (f, s') -> parse (fmap f px) s'

instance Monad Parser where
 p >>= f = Parser $ \s -> case parse p s of
 Nothing -> Nothing
 Just (x, s') -> parse (f x) s'

class Applicative f => Alternative f where
 empty :: f a
 (<<|>>) :: f a -> f a -> f a

 many :: f a -> f [a]
 some :: f a -> f [a]

 many x = some x <|> pure []
 some x = pure (:) <<|>> x <<|>> many x

instance Alternative Parser where
 empty = Parser $ \s -> Nothing
 p <|> q = Parser $ \s -> case parse p s of
 Nothing -> parse q s
 r -> r
item :: Parser Char
item = Parser $ \inp \mapsto \begin{cases} \text{Nothing} & (x:xs) \\
\text{Just } (x, xs) & \text{otherwise} \end{cases}

sat :: (Char -> Bool) -> Parser Char
sat p = do x <- item
 if p x then return x else empty

char :: Char -> Parser Char
char c = sat (== c)

string :: String -> Parser String
string "" = return ""
string (x:xs) = do char x
 string xs
 return (x:xs)

alpha :: Parser Char
alpha = sat isAlpha

space :: Parser ()
space = do many (sat isSpace)
 return ()

token :: Parser a -> Parser a
token p = do space
 x <- p
 space
 return x

symbol :: String -> Parser String
symbol s = token (string s)

-- Search
search :: (Eq a, Show a) => (a -> Bool) -> (a -> [a]) -> (a -> b) -> a -> Maybe a
search goal succ comb nodes oldNodes
| null nodes = Nothing
| goal (head nodes) = Just (head nodes)
| otherwise = let (n:ns) = nodes
 in search goal succ comb
 (comb (removeDups (succ n)) ns)
 (n:oldNodes)
 where removeDups = filter (not . ((flip elem) (nodes ++ oldNodes)))

bestFirstSearch :: (Eq a, Show a, Ord b) => (a -> Bool) -> (a -> [a]) -> (a -> Maybe a) -> a -> Maybe a
bestFirstSearch goal succ score start = search goal succ comb [start] []
 where comb new old = sortOn score (new ++ old)