Preliminaries

CS 331: Data Structures and Algorithms
Michael Saelee <lee@iit.edu>
Michael (Sae) Lee

- lee@iit.edu
- http://moss.cs.iit.edu
- Office: SB 226A
Agenda

- Course overview & Administrivia
- Prerequisites
- Topics & Resources
- Grading
- Dev environment & Class procedures
Data Structures

- How do we store, organize, and retrieve data on a computer?

& Algorithms

- How can we efficiently (in space/time) carry out some typical data processing operations?
- How do we analyze and describe their performance?
Prerequisites

- I assume you are …
 - fluent in some programming language
 - familiar with procedural & OO paradigms
 - comfortable with development processes:
 - compilation, debugging, testing
Python

- We’ll use the Python programming language to explore data structures & algorithms

- Easy-to-learn, clean (“one obvious way to do” things), and popular language

- Ton of useful, powerful libraries
Topics

- Python crash course
- Algorithmic analysis
- Linear data structures (Lists, Stacks, Queues)
- Recursion and Trees
- Hashing and Hashtables
Online resources

1. Course website: moss.cs.iit.edu/cs331
 - static information
 - lecture calendar, lab writeups, slides, screencasts, links, etc.
Online resources

2. Piazza: discussion forum
 - all class-related questions
 - monitored by TAs
 - scales *way* better than e-mail
 - announcements, links to additional readings & resources
Online resources

3. Blackboard
- only for grade reporting!
Supplements

- The Python Tutorial (docs.python.org/3/)
- Problem Solving with Algorithms and Data Structures Using Python
Grading

- 40% Machine Problems
- 20% Quizzes / Self-evaluation
- 40% Exams (3 total: 2 midterms + final)
On Exams and Scores

- Exams are all cumulative

- Higher scores on later exams will replace lower-scoring, earlier exams
```
>> scores = [60, 80, 75]
>> [max(scores[i:]) for i in range(3)]
[80, 80, 75]

>> scores = [75, 80, 100]
>> [max(scores[i:]) for i in range(3)]
[100, 100, 100]
```
Machine Problems

- Programming assignment(s) every 1-2 weeks
- All assignments are retrieved and submitted via the class Jupiter Notebook server: braeburn.cs.iit.edu
- Accounts created by Friday!
Jupyter Notebooks

- In-browser Python development platform
- “Cells” can contain plain text, code, output (and more)
- All lecture notes, demos, and assignments will be distributed as notebook files
Jupyter Notebooks

- You can install a notebook server on your own computer (see http://jupyter.org) for convenience

- But *all work must be tested and submitted* on the class server!
Class procedure

- Review reading/video before arriving to class
- Download starter notebooks and upload to notebook server before class
- Class will consist of lots of interactive demos (code along with me!)
- Completed notebooks are always posted