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So far, our runtime analysis has been 
based on empirical evidence 
	 — 	i.e., runtimes obtained from actually  
	 	 running our algorithms
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But measured runtime is very sensitive to: 

- platform (OS/compiler/interpreter) 

- concurrent tasks 

- implementation details (vs. high-level 
algorithm)
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And measured runtime doesn’t always 
help us see long-term / big picture trends
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Reframing the problem: 

Given an algorithm that takes input size n, 
we want a function T(n) that describes the 
running time of  the algorithm
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input size might be the number of  items in the 
input (e.g., as in a list), or the magnitude of  
the input value (e.g., for numeric input). 

an algorithm may also be dependent on 
the size of  more than one input.
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def sort(vals): 
    # input size = len(vals)

def factorial(n): 
    # input size = n

def gcd(m, n): 
    # input size = (m, n)
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running time is based on # of  primitive 
operations (e.g., statements, computations) 
carried out by the algorithm. 

ideally, machine independent!
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 n – 1 
 n – 1 
 1

def factorial(n): 
    prod = 1 
    for k in range(2, n+1): 
        prod *= k 
    return prod

 c1 
 c2 
 c3 
 c4

cost times

T (n) = c1 + (n� 1)(c2 + c3) + c4

Messy! Per-instruction costs obscure the  
“big picture” runtime function.
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def factorial(n): 
    prod = 1 
    for k in range(2, n+1): 
        prod *= k 
    return prod

times
 1 
 n – 1 
 n – 1 
 1

T (n) = 2(n� 1) + 2 = 2n

Simplification #1: ignore actual cost of   
each line of  code.  
Runtime is linear w.r.t. input size.
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Next: a sort algorithm — insertion sort 

Inspiration: sorting a hand of  cards



Computer 
ScienceScience

[2, 3, 5, 1, 4]insertion:
j

i
[5, 2, 3, 1, 4]init:

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break
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def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break

times
 n – 1 
 ? 
 ? 
 ? 
 ? 
 ?

?’s will vary based on initial “sortedness” 
... useful to contemplate worst case scenario
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times
 n – 1 
 ? 
 ? 
 ? 
 ? 
 ?

worst case arises when list values start out 
in reverse order!

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break
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times
 n – 1 
 1, 2, ..., (n – 1) 
 1, 2, ..., (n – 1) 
 1, 2, ..., (n – 1) 
 0 
 0

worst case analysis — this is our default 
analysis hereafter unless otherwise noted

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break
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Review (or crash course) on arithmetic series 
e.g., 1+2+3+4+5 (=15) 

Sum can also be found by: 

- adding first and last term (1+5=6) 

- dividing by two (find average) (6/2=3) 

- multiplying by num of  values (3⨉5=15)
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1 + 2 + · · ·+ n =
nX

t=1

t =
n(n+ 1)

2
i.e.,

1 + 2 + · · ·+ (n� 1) =
n�1X

t=1

t =
(n� 1)n

2
and
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times
 n – 1 
 1, 2, ..., (n – 1) 
 1, 2, ..., (n – 1) 
 1, 2, ..., (n – 1) 
 0 
 0

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break
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times
 n – 1 
   
   
   
 0 
 0

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break

Pn�1
t=1 tPn�1
t=1 t

Pn�1
t=1 t



Computer 
ScienceScience

times
 n – 1 
 (n – 1)n/2 
 (n – 1)n/2  
 (n – 1)n/2  
 0 
 0

def insertion_sort(lst): 
    for i in range(1, len(lst)): 
        for j in range(i, 0, -1): 
            if lst[j] < lst[j-1]: 
                lst[j], lst[j-1] = lst[j-1], lst[j] 
            else: 
                break

T (n) = (n� 1) +
3(n� 1)n

2

=
2n� 2 + 3n2 � 3n

2
=

3

2
n2 � n

2
� 1



Computer 
ScienceScience

i.e., runtime of  insertion sort is a quadratic 
function of  its input size. 

Simplification #2: only consider leading 
term; i.e., with the highest order of  growth 

Simplification #3: ignore constant coefficients

T (n) =
3

2
n2 � n

2
� 1
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... we conclude that insertion sort has a 
worst-case runtime complexity of  n2 

we write: T (n) = O(n2)

read: “is big-O of ”

T (n) =
3

2
n2 � n

2
� 1
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formally, f(n) = O(g(n))

means that there exists constants c, n0

0  f(n)  c · g(n)such that

n � n0for all
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i.e., f(n) = O(g(n))

intuitively means that g (multiplied by a  
constant factor) sets an upper bound on f  
as n gets large — i.e., an asymptotic bound
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Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)
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x0

f(n) =
3

2
n2 � n

2
� 1

g(n) =
3

2
n2
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technically, f = O(g) does not imply a 
asymptotically tight bound  

e.g., n = O(n2) is true, but there is no 
constant c such that cn2 will approximate 
the growth of  n, as n gets large
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but in this class we will use big-O notation 
to signify asymptotically tight bounds 

i.e., there are constants c1, c2 such that: 

(there’s another notation: Θ — big-theta 
— but we’re avoiding the formalism)

c1g(n)  f(n)  c2g(n), for n � n0
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Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

asymptotically tight bound: g “sandwiches” f

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)
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So far, we've seen: 

- binary search = O(log n) 

- factorial, linear search = O(n) 

- insertion sort = O(n2)
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def quadratic_roots(a, b, c): 
    discr = b**2 - 4*a*c 
    if discr < 0: 
        return None 
    discr = math.sqrt(discr) 
    return (-b+discr)/(2*a), (-b-discr)/(2*a)

= O(?)
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def quadratic_roots(a, b, c): 
    discr = b**2 - 4*a*c 
    if discr < 0: 
        return None 
    discr = math.sqrt(discr) 
    return (-b+discr)/(2*a), (-b-discr)/(2*a)

= O(?)

Always a fixed (constant) number of  LOC 
executed, regardless of  input.
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def quadratic_roots(a, b, c): 
    discr = b**2 - 4*a*c 
    if discr < 0: 
        return None 
    discr = math.sqrt(discr) 
    return (-b+discr)/(2*a), (-b-discr)/(2*a)

T(n) = C

Always a fixed (constant) number of  LOC 
executed, regardless of  input.

 = O(1)
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= O(?)

def foo(m, n): 
    for _ in range(m): 
        for _ in range(n): 
            pass
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= O(m×n)

def foo(m, n): 
    for _ in range(m): 
        for _ in range(n): 
            pass
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= O(?)

def foo(n): 
    for _ in range(n): 
        for _ in range(n): 
            for _ in range(n): 
                pass
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= O(n3)

def foo(n): 
    for _ in range(n): 
        for _ in range(n): 
            for _ in range(n): 
                pass
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2

4
a00 a01 a02
a10 a11 a12
a20 a21 a22

3

5⇥

2

4
b00 b01 b02
b10 b11 b12
b20 b21 b22

3

5 =

2

4
c00 c01 c02
c10 c11 c12
c20 c21 c22

3

5

cij = ai0b0j + ai1b1j + · · ·+ ainbnj

i.e., for n×n input matrices, each result 
cell requires n multiplications
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= O(dim3)

def square_matrix_multiply(a, b): 
    dim = len(a) 
    c = [[0] * dim for _ in range(dim)] 
    for row in range(dim): 
        for col in range(dim): 
            for i in range(dim): 
                c[row][col] += a[row][i] * b[i][col] 
    return c
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using “brute force” to  
crack an n-bit password = O(?)
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1 character (8 bits)

00000000 
00000001 
00000010 
00000011 
00000100 
00000101 
00000110 
00000111 
00001000 
00001001 
00001010 
00001011 
00001100 
00001101 
00001110 
... 
11110010 
11110011 
11110100 
11110101 
11110110 
11110111 
11111000 
11111001 
11111010 
11111011 
11111100 
11111101 
11111110 
11111111z

}|
{

= O(?)
(28 possible values)
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using “brute force” to  
crack an n-bit password = O(2n)
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Name Class Example
Constant O(1) Compute discriminant
Logarithmic O(log n) Binary search
Linear O(n) Linear search
Linearithmic O(n log n) Heap sort (coming!)
Quadratic O(n2) Insertion sort
Cubic O(n3) Matrix multiplication
Polynomial O(nc) Generally, c nested loops over n items
Exponential O(cn) Brute forcing an n-bit password
Factorial O(n!) “Traveling salesman” problem

Common order of  growth classes


