
Runtime Complexity
CS 331: Data Structures and Algorithms

Computer
ScienceScience

So far, our runtime analysis has been
based on empirical evidence
	 — 	i.e., runtimes obtained from actually  
	 	 running our algorithms

Computer
ScienceScience

But measured runtime is very sensitive to:

- platform (OS/compiler/interpreter)

- concurrent tasks

- implementation details (vs. high-level
algorithm)

Computer
ScienceScience

And measured runtime doesn’t always
help us see long-term / big picture trends

Computer
ScienceScience

Reframing the problem:

Given an algorithm that takes input size n,
we want a function T(n) that describes the
running time of the algorithm

Computer
ScienceScience

input size might be the number of items in the
input (e.g., as in a list), or the magnitude of
the input value (e.g., for numeric input).

an algorithm may also be dependent on
the size of more than one input.

Computer
ScienceScience

def sort(vals):
 # input size = len(vals)

def factorial(n):
 # input size = n

def gcd(m, n):
 # input size = (m, n)

Computer
ScienceScience

running time is based on # of primitive
operations (e.g., statements, computations)
carried out by the algorithm.

ideally, machine independent!

Computer
ScienceScience

 1
 n – 1
 n – 1
 1

def factorial(n):
 prod = 1
 for k in range(2, n+1):
 prod *= k
 return prod

 c1
 c2
 c3
 c4

cost times

T (n) = c1 + (n� 1)(c2 + c3) + c4

Messy! Per-instruction costs obscure the  
“big picture” runtime function.

Computer
ScienceScience

def factorial(n):
 prod = 1
 for k in range(2, n+1):
 prod *= k
 return prod

times
 1
 n – 1
 n – 1
 1

T (n) = 2(n� 1) + 2 = 2n

Simplification #1: ignore actual cost of  
each line of code.
Runtime is linear w.r.t. input size.

Computer
ScienceScience

Next: a sort algorithm — insertion sort

Inspiration: sorting a hand of cards

Computer
ScienceScience

[2, 3, 5, 1, 4]insertion:
j

i
[5, 2, 3, 1, 4]init:

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

Computer
ScienceScience

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

times
 n – 1
 ?
 ?
 ?
 ?
 ?

?’s will vary based on initial “sortedness”
... useful to contemplate worst case scenario

Computer
ScienceScience

times
 n – 1
 ?
 ?
 ?
 ?
 ?

worst case arises when list values start out
in reverse order!

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

Computer
ScienceScience

times
 n – 1
 1, 2, ..., (n – 1)
 1, 2, ..., (n – 1)
 1, 2, ..., (n – 1)
 0
 0

worst case analysis — this is our default
analysis hereafter unless otherwise noted

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

Computer
ScienceScience

Review (or crash course) on arithmetic series
e.g., 1+2+3+4+5 (=15)

Sum can also be found by:

- adding first and last term (1+5=6)

- dividing by two (find average) (6/2=3)

- multiplying by num of values (3⨉5=15)

Computer
ScienceScience

1 + 2 + · · ·+ n =
nX

t=1

t =
n(n+ 1)

2
i.e.,

1 + 2 + · · ·+ (n� 1) =
n�1X

t=1

t =
(n� 1)n

2
and

Computer
ScienceScience

times
 n – 1
 1, 2, ..., (n – 1)
 1, 2, ..., (n – 1)
 1, 2, ..., (n – 1)
 0
 0

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

Computer
ScienceScience

times
 n – 1

 0
 0

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

Pn�1
t=1 tPn�1
t=1 t

Pn�1
t=1 t

Computer
ScienceScience

times
 n – 1
 (n – 1)n/2
 (n – 1)n/2
 (n – 1)n/2
 0
 0

def insertion_sort(lst):
 for i in range(1, len(lst)):
 for j in range(i, 0, -1):
 if lst[j] < lst[j-1]:
 lst[j], lst[j-1] = lst[j-1], lst[j]
 else:
 break

T (n) = (n� 1) +
3(n� 1)n

2

=
2n� 2 + 3n2 � 3n

2
=

3

2
n2 � n

2
� 1

Computer
ScienceScience

i.e., runtime of insertion sort is a quadratic
function of its input size.

Simplification #2: only consider leading
term; i.e., with the highest order of growth

Simplification #3: ignore constant coefficients

T (n) =
3

2
n2 � n

2
� 1

Computer
ScienceScience

... we conclude that insertion sort has a
worst-case runtime complexity of n2

we write: T (n) = O(n2)

read: “is big-O of ”

T (n) =
3

2
n2 � n

2
� 1

Computer
ScienceScience

formally, f(n) = O(g(n))

means that there exists constants c, n0

0 f(n) c · g(n)such that

n � n0for all

Computer
ScienceScience

i.e., f(n) = O(g(n))

intuitively means that g (multiplied by a  
constant factor) sets an upper bound on f  
as n gets large — i.e., an asymptotic bound

Computer
ScienceScience3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)

Computer
ScienceScience

x0

f(n) =
3

2
n2 � n

2
� 1

g(n) =
3

2
n2

Computer
ScienceScience

technically, f = O(g) does not imply a
asymptotically tight bound

e.g., n = O(n2) is true, but there is no
constant c such that cn2 will approximate
the growth of n, as n gets large

Computer
ScienceScience

but in this class we will use big-O notation
to signify asymptotically tight bounds

i.e., there are constants c1, c2 such that:

(there’s another notation: Θ — big-theta
— but we’re avoiding the formalism)

c1g(n) f(n) c2g(n), for n � n0

Computer
ScienceScience3.1 Asymptotic notation 45

(b) (c)(a)

nnn
n0n0n0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D !.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c1g.n/

c2g.n/

Figure 3.1 Graphic examples of the ‚, O , and ! notations. In each part, the value of n0 shown
is the minimum possible value; any greater value would also work. (a) ‚-notation bounds a func-
tion to within constant factors. We write f .n/ D ‚.g.n// if there exist positive constants n0, c1,
and c2 such that at and to the right of n0, the value of f .n/ always lies between c1g.n/ and c2g.n/
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f .n/ D O.g.n// if there are positive constants n0 and c such that at and to the right of n0, the value
of f .n/ always lies on or below cg.n/. (c) !-notation gives a lower bound for a function to within
a constant factor. We write f .n/ D !.g.n// if there are positive constants n0 and c such that at and
to the right of n0, the value of f .n/ always lies on or above cg.n/.

A function f .n/ belongs to the set ‚.g.n// if there exist positive constants c1

and c2 such that it can be “sandwiched” between c1g.n/ and c2g.n/, for suffi-
ciently large n. Because ‚.g.n// is a set, we could write “f .n/ 2 ‚.g.n//”
to indicate that f .n/ is a member of ‚.g.n//. Instead, we will usually write
“f .n/ D ‚.g.n//” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f .n/ and g.n/, where
f .n/ D ‚.g.n//. For all values of n at and to the right of n0, the value of f .n/
lies at or above c1g.n/ and at or below c2g.n/. In other words, for all n ! n0, the
function f .n/ is equal to g.n/ to within a constant factor. We say that g.n/ is an
asymptotically tight bound for f .n/.

The definition of ‚.g.n// requires that every member f .n/ 2 ‚.g.n// be
asymptotically nonnegative, that is, that f .n/ be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set ‚.g.n// is empty. We shall therefore assume that every
function used within ‚-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.

asymptotically tight bound: g “sandwiches” f

(from Cormen, Leiserson, Riest, and Stein, Introduction to Algorithms)

Computer
ScienceScience

So far, we've seen:

- binary search = O(log n)

- factorial, linear search = O(n)

- insertion sort = O(n2)

Computer
ScienceScience

def quadratic_roots(a, b, c):
 discr = b**2 - 4*a*c
 if discr < 0:
 return None
 discr = math.sqrt(discr)
 return (-b+discr)/(2*a), (-b-discr)/(2*a)

= O(?)

Computer
ScienceScience

def quadratic_roots(a, b, c):
 discr = b**2 - 4*a*c
 if discr < 0:
 return None
 discr = math.sqrt(discr)
 return (-b+discr)/(2*a), (-b-discr)/(2*a)

= O(?)

Always a fixed (constant) number of LOC
executed, regardless of input.

Computer
ScienceScience

def quadratic_roots(a, b, c):
 discr = b**2 - 4*a*c
 if discr < 0:
 return None
 discr = math.sqrt(discr)
 return (-b+discr)/(2*a), (-b-discr)/(2*a)

T(n) = C

Always a fixed (constant) number of LOC
executed, regardless of input.

 = O(1)

Computer
ScienceScience

= O(?)

def foo(m, n):
 for _ in range(m):
 for _ in range(n):
 pass

Computer
ScienceScience

= O(m×n)

def foo(m, n):
 for _ in range(m):
 for _ in range(n):
 pass

Computer
ScienceScience

= O(?)

def foo(n):
 for _ in range(n):
 for _ in range(n):
 for _ in range(n):
 pass

Computer
ScienceScience

= O(n3)

def foo(n):
 for _ in range(n):
 for _ in range(n):
 for _ in range(n):
 pass

Computer
ScienceScience

2

4
a00 a01 a02
a10 a11 a12
a20 a21 a22

3

5⇥

2

4
b00 b01 b02
b10 b11 b12
b20 b21 b22

3

5 =

2

4
c00 c01 c02
c10 c11 c12
c20 c21 c22

3

5

cij = ai0b0j + ai1b1j + · · ·+ ainbnj

i.e., for n×n input matrices, each result
cell requires n multiplications

Computer
ScienceScience

= O(dim3)

def square_matrix_multiply(a, b):
 dim = len(a)
 c = [[0] * dim for _ in range(dim)]
 for row in range(dim):
 for col in range(dim):
 for i in range(dim):
 c[row][col] += a[row][i] * b[i][col]
 return c

Computer
ScienceScience

using “brute force” to  
crack an n-bit password = O(?)

Computer
ScienceScience

1 character (8 bits)

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
...
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111z

}|
{

= O(?)
(28 possible values)

Computer
ScienceScience

using “brute force” to  
crack an n-bit password = O(2n)

Computer
ScienceScience

Name Class Example
Constant O(1) Compute discriminant
Logarithmic O(log n) Binary search
Linear O(n) Linear search
Linearithmic O(n log n) Heap sort (coming!)
Quadratic O(n2) Insertion sort
Cubic O(n3) Matrix multiplication
Polynomial O(nc) Generally, c nested loops over n items
Exponential O(cn) Brute forcing an n-bit password
Factorial O(n!) “Traveling salesman” problem

Common order of growth classes

