
CS 331 Fall 2017

Midterm Exam

Instructions:

• This exam is closed-book, closed-notes. Computers of any kind are not permitted.

• For numbered, multiple-choice questions, fill your answer in the corresponding row on the
“bubble” sheet.

• For problems that require a written solution (labeled with the prefix “WP”), write your
answer in the space provided on the written solution sheet. Please write legibly and clearly
indicate your final answer.

• Turn in the exam question packet, bubble sheet, and written solution sheet separately.

Page 1 of 6



Basic Concepts (24 points):

1. What are the contents of the list lst after the following code is executed?

lst = list(range(10))

lst[1:8] = [2*x+1 for x in range(1, 4)]

(a) [0, 3, 5, 7, 9]

(b) [0, 3, 5, 7, 8, 9]

(c) [0, 3, 7, 15, 9]

(d) [0, 1, 1, 3, 5, 2, 3, 4, 5, 6, 7, 8, 9]

2. What are the contents of the dictionary dct after the following code is executed?

dct = {}

for i in range(10, 0, -2):

if i * 2 not in dct:

dct[i] = i // 2

(a) {2: 1, 6: 3, 8: 4, 10: 5}

(b) {2: 1, 4: 2, 6: 3, 8: 4, 10: 5}

(c) {20: 10, 16: 8, 12: 6}

(d) {1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 7: 14, 9: 18}

3. What is the worst-case runtime complexity of locating and returning the last element in an
unsorted array-backed list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

4. What is the worst-case runtime complexity of determining whether a given value exists in an
unsorted array-backed list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

5. What is the worst-case runtime complexity of deleting a random element from an array-backed
list of N elements?

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N logN)

Page 2 of 6



6. Which of the following scenarios will consistently cause binary search (given search value x
and list lst) to exhibit the poorest runtime complexity?

(a) x is the least common value in lst (i.e., fewest duplicates)

(b) lst contains duplicates of x

(c) x is the middle element of lst

(d) x is not found in lst

7. Consider the following function definition:

def gen():

print(0)

yield 10

print(10)

yield 20

Which of the following assigns the value 10 to the variable x?

(a) g = gen()

x = next(g)

(b) x = iter(gen())

(c) _ = gen()

x = gen()

(d) g = gen()

_ = next(g)

g = next(g)

8. What is the maximum number of elements a properly implemented binary search will need to
compare a value against in order to determine its position in a sorted list of 100,000 elements?

(a) 8

(b) 16

(c) 24

(d) 32

Page 3 of 6



9. Which of the following relations is not, strictly speaking, true?

(a) 3n + 2 = O(n)

(b) 2n3 + 10n− 5 = O(n3)

(c) 10n − n2 = O(n2)

(d) 5 log2 n = O(2n)

10. What do the variables a and b refer to, respectively, after the following code executes?

lst = ’red fish blue frog egg’.split()

it1 = iter(lst)

it2 = iter(lst)

next(it1), next(it2), next(it2)

a, b = next(it1), next(it2)

(a) frog and egg

(b) blue and egg

(c) red and frog

(d) fish and blue

11. Which of the following operations on some built-in Python list lst has O(N) runtime com-
plexity (assume that i and j are valid indices)?

(a) len(lst)

(b) lst[i] = x

(c) x = lst[j]

(d) lst[i:j] = []

12. Which of the following operations on some built-in Python list lst will mutate the list (assume
that i and j are valid indices)?

(a) lst + lst

(b) lst.extend(x)

(c) lst.index(x, i, j)

(d) lst * 7

Page 4 of 6



Estimating Big-O (9 points):

For each of the following functions, determine the corresponding worst-case runtime complexity
when called with an input list of size N . Assume the input list is a Python (array-backed) list.

13. def fA(N, x):

accum = 0

while N > 1:

if N % x == 0:

accum += N

N = N - N/2

return accum

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

14. def fB(M, N):

accum = 0

for i in range(1, M, M//10):

for j in range(1, N, N//10):

if i < j:

accum += i

else:

accum += j

return accum

(a) O(1)

(b) O(M)

(c) O(N)

(d) O(M ·N)

15. def fC(lst):

N = len(lst)

accum = 0

if N < 100:

return 0

else:

for i in range(N * 10):

accum += i

return accum

(a) O(1)

(b) O(logN)

(c) O(N)

(d) O(N2)

Page 5 of 6



Lists and Dictionaries (6 points):

WP1 Complete the implementation of max_repeat_counts, which takes a non-empty list and
returns a dictionary containing a key for each element in the list, with a value corresponding
to the maximum number of times the element repeats (in succession).

E.g., max_repeat_counts([1, 2, 2, 2, 2]) returns {1: 1, 2: 4}.

E.g., max_repeat_counts([3, 3, 4, 4, 3, 4, 4, 4]) returns {3: 2, 4: 3}.

Insertion Sort (6 points):

Consider the following reversed insertion sort implementation which prints the contents of the list
at the start of each inner iteration:

def rev_insertion_sort(lst):

for i in range(1, len(lst)):

for j in range(i, 0, -1):

print(lst) # print list contents

if lst[j] > lst[j-1]:

lst[j-1], lst[j] = lst[j], lst[j-1]

else:

break

WP2 Show the list contents, in order, displayed by all calls to print when rev_insertion_sort

is called with the input list [2, 1, 3, 4, 5]. The first output is already filled in for you;
you may not need all lines.

Array-backed List (6 points):

WP3 Complete the implementation of the array-backed list method remove_span which should
remove the first span of adjacent elements with the specified value from the list.

E.g., remove_span(2) on [1, 1, 2, 2, 2, 3, 3, 2, 2] results in [1, 1, 3, 3, 2, 2].

E.g., remove_span(5) on [3, 3, 4, 4, 5, 5, 5] results in [3, 3, 4, 4].

If the list does not contain the specified value, a ValueError should be raised.

Your implementation should assume elements are stored in a Python list referenced by
self.data, which you can only manipulate as an array (using the rules given in class).
You may not use any other ArrayList methods.

Page 6 of 6


