
(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).



(a) 6

(b) 13

(c) 15

(d) 30

1. What is the output of the following code snippet?

def f_1(x, y, z=10):
    return x+y+z

print(f_1(1, 2, 3))

(a) 100 100

(b) 200 200

(c) 100 200

(d) 200 100

2. What is the output of the following code snippet?

class C2:
   var = 100
    
    def __init__(self, val):
        self.var = val

c2inst = C2(200)
print(C2.var, c2inst.var)

(a) 20 10

(b) 20 20

(c) 20 40

(d) 40 20

3. What is the output of the following code snippet?

class C3:
    def __init__(self, val):
        self.val = val
        
    def m(x, y):
        x.val = y.val * 2

c3inst1 = C3(10)
c3inst2 = C3(20)
c3inst1.m(c3inst2)
print(c3inst1.val, c3inst2.val)

(a) 6

(b) 10

(c) 14

(d) 36

4. What is the output of the following code snippet?

def f4(fn, lst, init):
    res = init
    for i in range(len(lst)):
        res = fn(res, lst[i])
    return res

print(f4(lambda a,b: a + b**2, [1, 2, 2, 1], 0))

(a) [2, 3, 4, 5] []

(b) [2, 3] [3, 4, 5]

(c) [2, 3, 5] [3, 4, 2, 5]

(d) [2, 3, 4, 5] [2, 3, 4, 5]

5. What is the output of the following code snippet?

def f5(init):
    l = [x for x in init]
    def rf(it=None):
        if it and it not in l:
            l.append(it)
        return l
    return rf

g5 = f5([2, 3])
h5 = f5([3, 4])
g5(2)
h5(5)
print(g5(), h5())

(a) [5, 6, 4]

(b) [('apple', 5), ('banana', 6), ('fish', 4)]

(c) [('apple', 3), ('banana', 3), ('fish', 3)]

(d) [('apple', 'banana', 'fish'), (5, 6, 4)]

6. What are the contents of lst after the following assignment?

lst = [(s, len(s)) for s in ('apple', 'banana', 'fish')]

(a) [(0, 1), (0, 2), (1, 2)]

(b) [(0, 1), [(0, 2), (1, 2)]]

(c) [[(0, 1)], [(0, 2)], [(1, 2)]]

(d) [[], [(0, 1)], [(0, 2), (1, 2)]]

7. What are the contents of lst after the following assignment?

lst = [[(x,y) for x in range(3) if x<y] for y in range(3)]

(a) 0 0

(b) 2 4

(c) 5 9

(d) 9 8

8. What is the output of the following code snippet?

d = {}
for x in range(10):
    if x//2 in d:      # '//' performs integer division
        d[x//2] += x
    d[x] = 0

print(d[1], d[2])

(a) []

(b) 16

(c) [0, 4, 8, 12, 16, 20, 24, 28, 32, 36]

(d) [0, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

9. What is the output of the following code snippet?

d = {i:[] for i in range(10)}
for a in range(10):
    for b in range(10):
        d[a].append(a*b)

print(d[4])

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

10. What is the worst-case run-time complexity of retrieving the element in the last position of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

11. What is the worst-case run-time complexity of inserting an element into the middle of an array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

12. What is the worst-case run-time complexity when using binary search to search for an element that does not 
exist in a sorted, array-backed list?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

13. Recognizing that insertion sort is least efficient when its input is in reverse order, John P. Hacker modifies our 
implementation so that it performs an initial check to see if the input is in reverse order and, if so, simply 
reverses and returns the list instead of sorting it. Otherwise, insertion sort works as before. What is the worst-
case run-time complexity of this modified version (across all inputs, sorted, reversed, or unsorted)?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

14. What is the worst-case run-time complexity of deleting the middle element of a singly-linked list, given that we 
already have a reference to the node we want to delete?

(a) O(1)

(b) O(log N)

(c) O(N)

(d) O(N2)

15. What is the worst-case run-time complexity of insertion sort, if implemented on top of a doubly-linked list?

16. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_16(n):
    res = 1
    while n > 10:
        for i in range(10):
            res += i * n
        n = n // 2
    return res

17. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_17(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(100):
        a = random.randrange(n)
        b = random.randrange(n)
        lst[a], lst[b] = lst[b], lst[a]
    return lst

18. Which of the plots best depicts the worst-case run-time complexity of the following function?

def f_18(lst): # lst is an array-backed list
    n = len(lst)
    for i in range(2**n):
        lst[i%n] += i
    return lst

(a) return self.join(', ')

(b) return [str(x) for x in self]

(c) return x.join(', ') for x in self

(d) return ', '.join(str(x) for x in self)

19. Which of the following could work as the body of __str__ in a class that already has a functional __iter__ 
method?

(a) if val < self[mid]:
    bot = mid + 1
elif val > self[mid]:
    top = mid - 1

(b) if val > self[mid]:
    bot = mid + 1
elif val < self[mid]:
    top = mid - 1

(c) if val > self[mid]:
    top = mid + 1
elif val < self[mid]:
    bot = mid - 1

(d) if val > self[mid]:
    mid = top - 1
elif val < self[mid]:
    mid = bot + 1

20. Which snippet correctly completes the following binary search implementation for an array list which assumes 
the underlying data is sorted in descending order (e.g., [9, 7, 5, 3, 1])?

def bin_search_descending(self, val):
    bot = 0
    top = len(self) - 1
    while bot <= top:
        mid = (bot + top) // 2
        _____________________
        _____________________
        _____________________
        _____________________
        else:
            return True # val found in list
    return False # val not found in list

(a) Change line 2 to: self.data[i] = self.data[i+1]

(b) Change line 1 to: for i in range(idx+1, len(self.data)):

(c) Change line 1 to: for i in range(len(self.data), idx+1, -1):

(d) Change line 2 to: self.data[i], self.data[i-1] = self.data[i-1], self.data[i]

21. The following implementation of __delitem__ (given that idx is a positive, valid index) in an array-backed list 
doesn’t appear to work correctly. How would you go about fixing it?

1  for i in range(len(self.data)-1, idx, -1):
2     self.data[i-1] = self.data[i]
3  del self.data[len(self.data)-1]

(a) i in visited and self[min_idx] < self[i]:

(b) visited[-1] < i and self[i] < self[min_idx]:

(c) i not in visited and self[i] < self[min_idx]:

(d) visited[-1] != i and self[min_idx] < self[visited[-1]]:

22. Which snippet completes the following method so that it correctly implements an iterator that yields the values 
of an array-backed list in sorted order, without actually modifying the underlying array?

def sorted_iter(self):
    visited = []
    while len(visited) < len(self):
        min_idx = 0
        while min_idx in visited:
            min_idx += 1
        for i in range(len(self)):
            if ____________________________________
                min_idx = i
        visited.append(min_idx)
        yield self[min_idx]

(a) start_node.next, end_node.prior = start_node.prior, end_node.next

(b) start_node.prior, end_node.next = end_node.next, start_node.prior

(c) start_node.prior.next, end_node.next.prior = start_node.next, end_node.prior

(d) start_node.prior.next, end_node.next.prior = end_node.next, start_node.prior

23. Which snippet completes the following method so that it correctly removes all elements between indexes start 
and end (inclusive) from the underlying doubly-linked list (with a sentinel head node)?

def remove_range(self, start, end):
    assert(start <= end and end < len(self))
    n = self.head.next
    for i in range(len(self)):
        if i == start:
            start_node = n
        if i == end:
            end_node = n
        n = n.next
    ____________________________

(recall that when assigning to multiple targets, the expressions on the right side of the assignment operator are 
all evaluated first, then the values are assigned to the targets one at a time, from left to right)

(a) n.next, n.prior = n.prior, n.next

(b) n.next, n.next.prior = n.next.next, n

(c) n.next.prior, n.next = n, n.next.next

(d) n.next.next, n.next.prior = n.next.next.next, n

24. Which snippet completes the body of the loop in the following method so that it correctly removes all 
occurrences of value from the underlying doubly-linked list (with a sentinel head node)?

def remove_all(self, value):
    n = self.head
    while n.next is not self.head:
        if n.next.val == value:
            __________________________________
         else:
            n = n.next

(a) n.next, n.prior = n.prior, n.next

(b) n, n.prior = n.prior, n.next.next

(c) n.next.prior, n.prior = n.next, n.prior

(d) n.next.prior, n.prior.next = n.prior, n.next

25. Which snippet completes the body of the loop in the following method so that it correctly reverses the order of 
the nodes in the underlying doubly-linked list (with a sentinel head node)?

def reverse(self):
    self.head.next, self.head.prior = self.head.prior, self.head.next
    n = self.head.next
    while n is not self.head:
        ______________________________
        n = n.next

CS 331 Midterm Exam 1

Wednesday, March 9th, 2016
Please bubble your answers in on the provided answer sheet. Also be sure to write and bubble in your student ID 
number (without the leading ‘A’).


